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ABSTRACT 

In this work, we address the problem of low-rank matrix 
recovery from its under-sampled projections. The recovery 
is formulated as a Schatten-p norm minimization problem. 
We proposed a novel algorithm to solve the Schatten-p norm 
minimization problem based on the FOCUSS (FOCally 
Under-determined System Solver) approach. We compared 
our proposed method with state-of-the-art solvers. 
Experimental evaluation was carried out on two problems – 
matrix completion and image inpainting. For matrix 
completion, our proposed method showed better recovery 
rate than other methods. In the image inpainting problem, 
our method yields 1.5 dB improvement over the nearest 
competing algorithm.  
 

Index Terms— Low rank matrix recovery, Matrix 
Completion, Schatten-p norm 

1. INTRODUCTION 

Recently there has been considerable interest in the recovery 
of rank deficient matrices from their under-sampled 
projections. The practical applicability of such techniques 
arise in various problems of machine learning and signal 
processing, such as system identification [1], image 
inpainting [2], dynamic MRI reconstruction [3], etc. In order 
to recover a rank deficient matrix, one ideally solves, 
min  ( ) subject to ( )rank X y A X    (1) 
where 

1 2n nX is the rank deficient matrix to be solved,  

1my is the vector of under-sampled projections and 
1 2: n n mA 1 2n n1 21 2 m represents the linear operator. For image 

inpainting and matrix completion problems like 
collaborative filtering, system identification and direction of 
arrival estimation, the operator A is a binary mask. For the 
problem of dynamic MRI reconstruction, A is a restricted 
Fourier transform operator.  

Rank minimization is an NP hard problem [4]. 
Theoretical studies in low-rank matrix recovery [4],suggest 
substituting the NP hard rank minimization problem by its 
closest convex surrogate – nuclear norm minimization (2). 
The problem then becomes  

*
min   subject to ( )X y A X   (2) 

where 
*

X is the sum of singular values of X. 
This is a convex optimization problem that can be 

solved by semi-definite programming. This problem 
however requires an increase in the number of samples 
necessary to arrive at the solution, as compared to the NP 
hard problem. A list of efficient solvers for (2) can be found 
in [5]. 

Most of the theoretical results on low rank matrix 
recovery have been proven for the nuclear norm 
minimization. However, it has been seen empirically that 
non-convex surrogates of the rank of a matrix can yield 
better recovery results. In [6], a non-convex log-det heuristic 
was proposed: 
min logdet( ) subject to ( )X I y A X   (3) 
where  is a regularization parameter. 
Another non-convex heuristic, the reweighted nuclear norm 
(4), has also been proposed [7]. 

*
min  subject to ( )k kW XW y A X    (4) 
where in each iteration, Wk is updated as 

1/2
1( )k kW X I ,  being a regularization parameter. 

Yet another non-convex heuristic is the Iterated Re-weighted 
Least Squares (IRLS) method [8, 9]. 

21/2min  subject to ( )k F
W X y A X    (5) 

where in each iteration Wk is updated as 
1/2

1 1( )T
k k kW X X . 

All past studies in non-convex methods for low-rank 
matrix recovery [6-9] have shown that non-convex 
surrogates yield better reconstruction results than the convex 
nuclear norm. A similar conclusion was corroborated in our 
previous work [10, 11] where we have proposed solving the 
low-rank matrix recovery problem by the non-convex 
Schatten-p norm minimization (6). In these studies the 
following problem was solved by modified iterative soft 
thresholding.; 
min  subject to ( )

p

p

S
X y A X    (6) 

where 
1/

( )
p

pp
iS

X  

In the present paper, we derive a new algorithm to solve 
the Schatten-p norm minimization problem by a FOCally 
Under-determined System Solver (FOCUSS) [12] based 
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approach. In the past the FOCUSS approach has been 
successfully used in developing algorithms for sparse [12], 
group-sparse [13] and joint-sparse [14] recovery in 
Compressed Sensing.  

In this paper, we test the proposed algorithm on two 
practical examples. The first problem is that of matrix 
completion and the second is of image inpainting from 
images with missing pixels.  

The derivation of the algorithm is given in Section 2. 
Experimental evaluation on simulated and real data is 
provided in Section 3. Finally in Section 4, the conclusions 
of the work are discussed.  

2. DERIVATION OF THE ALGORITHM 

Our problem is to solve the Schatten-p norm minimization 
problem (6). The derivation is based on the FOCUSS 
approach [12]. For this work, we will define the Schatten-p 
norm of the matrix X as /2( )

p

p T p
S

X Tr X X ; therefore the 

problem to be solved is, 
/2min ( )  subject to ,  ( )T pTr X X y Ax x vec X  (7) 

The unconstrained Lagrangian form for (7) is, 
/2( , ) ( ) ( )T p TL x Tr X X y Ax   (8) 

where  is the vector of Lagrangian multipliers. 
The conditions for stationary points of (8) are, 

1
2( , ) ( ) 0
p

T T
x L X p XX X A   (9a) 

( , ) 0L X Ax y     (9b) 
Now (9) can be expressed as, 

1
20,  ( )
p

T TpWx A W I XX   (10) 
where denotes the Kronecker product. 
Solving, x from (10),  

11 Tx W A
p

     (11) 

W is a block diagonal matrix with positive semi-definite 
blocks along the diagonal. The problem is that, since W is 
positive semi-definite, the solution is not numerically stable. 
Such a problem was encountered while using FOCUSS for 
sparse signal recovery in Compressed Sensing [15]; in order 
to get a stable solution W must be positive definite and 
hence must be regularized. Following [15] and other works 
[7-9], we propose the following regularization, 

1
2

1 1( )
p

T
k k kW I X X I    (12) 

Here  is a small constant that regularizes the solution. 
This regularization also guarantees that W (and hence W-1) to 
be positive definite. As 0 , one arrives at the desired 
solution.  

Substituting the value of x from (11) into (9b) and 
solving for  we get, 

1 1( )Tp AW A y     (13) 
Substituting, the value of  back in (11), we get, 

1 1 1( )T Tx W A AW A y     (14) 
In order to efficiently compute x in each iteration, we 

re-write (14) as, 
1,  where ( ) (( )( ) )T Tx Rx x AR AR AR yh ( )T ((x x AR A,  where ( ) ((( ) ((((x where   (15) 

Here R is the Cholesky decomposition of W-1. The 
decomposition exists since W-1 is a positive definite matrix. 
The reason, we expressed (14) in the current form (15) is 
because, xx can be solved very efficiently using the LSQR 
algorithm. Based, on this modification, we propose the 
following efficient algorithm to solve the Schatten-p norm 
minimization problem. 
 
Intitialize: 1

0 ( )T Tx A AA y  which is a least squares 
solution; define  
Repeat until stopping criterion is met: 

Compute: 
1

2
1 1( )

p
T

k k kW I X X I and 1T
k k kR R W . 

Update: 1 ( ) (( )( ) )T T
k k k kx AR AR AR y( )k k( )(k k( )( and k kx Rxkxk . 

Reshape xk to matrix form Xk. 
Decrease: /10  iff 1 2k kx x tol   

 
We use two stopping criteria. The first one limits the 

maximum number of iterations to a certain value. The 
second stopping criterion is based on the value of the change 
in the objective function in two consecutive iterations; 
therefore if the change is nominal, then the iterations stop 
assuming the solution has reached a local minimum. The 
update step of the algorithm is solved by LSQR which runs 
for a maximum of 20 iterations. The value of  is initialized 
at 1. The tolerance level for deciding the decrease of  is 
fixed at 10-3. 

Owing to limitations in space, we are unable to analyze 
the convergence rate of our proposed algorithm. Since this is 
a FOCUSS based algorithm, the convergence rate can be 
shown to super-linear (2-p), by following an analysis similar 
to [12]. 

3. EXPERIMENTAL RESULTS 

The problem of recovering rank deficient matrices from 
partially sampled entries arises in various different 
engineering problems. In this work, we study two well 
known problems where this is directly applied – i) matrix 
completion, and ii) image inpainting.  

3.1 Matrix Completion 

The problem in matrix completion is to recover a low-rank 
matrix from its partially sampled entries. Such a problem 
arises in a variety of scenarios including collaborative 
filtering, system identification and direction of arrival 
estimation. In this case, the operator A is a binary mask.  

First we empirically study the convergence of our 
algorithm. As mentioned before, being a FOCUSS based 
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method it has a super-linear convergence rate of (2-p). We 
test the convergence of our algorithm for two cases: p=1 and 
p=0.1. The size of the matrix is 50 x 60 and has a rank of 5. 
40% of the entries were randomly sampled. The decrease of 
the normalised objective function versus the number of 
iterations is shown in Fig. 1. The graph is plotted for an 
average of 100 trials. It is difficult to experimentally verify 
the exact convergence rates, but it can be seen how fast the 
algorithm converges for p=1 as compared to p=0.1. 

 

 
Figure 1. Convergence of Objective Function for p = 1 and p = 0.1 
 

We compare the reconstruction accuracy from our 
method with the IRLS algorithm [8] and Soft Thresholding 
method [10]. For all the experiments the size of the matrix is 
fixed at 50 x 60 and the rank is varied from 1 to 20. 40% of 
the entries were randomly sampled. The reconstruction is 
considered a success if the relative mean squared error is 
less than 10-3. The results are averaged for 100 trials for 
each value of rank. 

Fig.2 shows the graph for a decreasing success rate with 
an increase in the rank of the matrix. It shows that our 
proposed FOCUSS based method has the highest success 
rate, followed by soft thresholding. The IRLS method has 
the lowest success rate. Comparing Fig. 2a and Fig. 2b, we 
see how the success rate improves as one moves from p = 1 
to p = 0.1. 

3.2 Image Inpainting 

In image inpainting the problem is to recover missing 
pixel values. In [2], natural images were modeled as rank 
deficient matrices and hence the inpainting problem was 
formulated as a low rank matrix recovery problem and was 
solved via nuclear norm minimization. In this paper, we 
experiment with the images of Lena and Barbara. 50% of the 
pixel values are randomly masked. The images are 
reconstructed from the masked samples via nuclear norm 
minimization (p=1).    For quantitative evaluation we 
provide the SNR values in Table 1. The superiority of our 
proposed method is discernible from the numerical results. 
Our method gives about 1.5 dB increase over the nearest 
competing method. 

The qualitative evaluation for inpainting can be seen in 
Fig.3. It shows how the reconstruction artifacts are visibly 
reduced with our proposed FOCUSS based reconstruction, 
compared to IRLS and soft thresholding. 
 
Table 1. SNR in dB from different reconstruction algorithms 
Image Name IRLS Soft-Thresh Pproposed 
Lena 25.7 27.6 29.1 
Barbara 24.6 26.9 28.5 

 

 

Figure 2. Comparison of Success Rates for Different Algorithms: Left – p = 1 and Right – p = 0.1 
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Figure3. Lena (top and Barbara (bottom): Left to right – Masked Image, IRLS, Soft Thresholding and Proposed FOCUSS Reconstruction 
 

4. CONCLUSION 

In this paper we propose a new algorithm for Schatten-p 
norm minimization. It is based on the FOCUSS approach 
[12]. The algorithm has a superlinear convergence rate of 2-
p. The convergence of the algorithm has been tested 
numerically for matrix completion problems. The proposed 
algorithm was compared against the Iterative Reweighted 
Least Squares (IRLS) method [8] and the soft thresholding 
method [10] for Schatten-p norm minimization. The results 
on matrix completion show that the success rate for low-rank 
matrix recovery from our proposed algorithm is significantly 
higher than the other methods compared against. Also the 
results in image inpainting indicate that our proposed 
method is able to recover missing pixel values with a higher 
degree of accuracy among the three competing methods. Our 
method gives about 1.5 dB increase in SNR over the nearest 
competing method – this is a significant improvement since 
in most image processing problems an improvement in 0.5 
dB is considered noticeable.  
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