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In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our
work ismotivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the
dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by
sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l0-
norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l1-
norm as a surrogate for the l0-norm and the non-convex Schatten-q norm (0bq≤1) as a surrogate for the rank of
matrix. Following past research in sparse recovery, we know that non-convex lp-norm (0bp≤1) is a better
substitute for the NP hard l0-norm than the convex l1-norm. Motivated by these studies, we propose
improvements over the previous studies by replacing the l1-norm sparsity penalty by the lp-norm. Thus, we
reconstruct the dynamic MRI sequence by solving a least squares minimization problem regularized by lp-norm
as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve
the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried
out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the
superiority of our proposed improvement over the existing methods.
l rights reserved.
© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this work we address the problem of reconstructing dynamic
Magnetic Resonance Imaging (MRI) sequences from under-sampled K-
space data of each frame. The reconstruction is carried out offline, i.e.,
posthumously after all the data (K-space samples from all frames) have
been collected. Such a reconstruction is typically formulated as an
under-determined linear inverse problem. Since it is under-determined,
additional assumptions regarding the structure of the dynamic MRI
sequence is required in order to obtain a physically viable solution.

Each frame of the dynamic MRI sequence is spatially correlated
(locally). This is a well known fact which has been used for
reconstructing static Magnetic Resonance (MR) images [1,2]. Also
since the frames are acquired after short intervals of time, they are
temporally correlated. Recent studies in dynamicMRI reconstruction
[3–14] exploit this spatiotemporal correlation while reconstructing
them from under-sampled K-space data.

The dynamic MRI data acquisition model can be expressed as
follows:

yt ¼ RFxt þ �t ð1Þ

where Xt denotes the MR image frame at the tth instant, T is the total
number of frames collected, yt is the collected K-space data for the tth

frame, F is the Fourier operator (2D or 3D as the case may be) which
maps the image space to the K-space, R is the under-sampling mask
on the K-space, xt is the vectorizedMR image formed by row/column
concatenation of the image matrix Xt and ηt is the system noise
assumed to be Normally distributed with variance σ2.

The problem is to recover all Xt's (t=1…T) from the given the
collected K-space data yt's for all the frames.

The motivation behind this work is straightforward. The aim is to
acquire a dynamic MRI sequence with high spatial and temporal
resolution. However as the speed of data acquisition is limited there is
always a trade-off between spatial and temporal resolution. Conven-
tional methods require the full K-space to be sampled on a uniform
Cartesian grid fromwhich the frames are reconstruction via inverse Fast
Fourier Transform (FFT). In such a circumstance, in order to get high
temporal resolution, the spatial resolution needs to be sacrificed. Recent
developments in dynamic MRI reconstruction [3–14] showed that full
sampling of the K-space is not required; one can partially sample the K-
space for each frame and employ a smart reconstruction algorithm that
exploits the spatiotemporal correlation of the sequence in order to
reconstruct it. This allows for improvement in temporal resolution
without sacrificing the spatial resolution. An example will make it clear:
suppose by traditional means one can acquire dynamic MRI sequences
of size 256 × 256 pixels at the rate of one frame per second. If the frame
rate is required to be increased 4 fold, conventional methods would
require reducing the spatial resolution to 128 × 128 pixels. However,
recent studies show that instead of reducing the spatial resolution, one
can reduce the sampling requirement for each frame by 4 fold (by
collecting 25% of the K-space samples from each frame) and thereby
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1 The signal X is said to be in the x-t space, where x refers to spatial domain and t
refers to temporal direction. When 1D Fourier transform is applied on X in the
temporal direction, the resultant signal is in the x-f space where f refers to temporal
frequency.

2 Let Am×n and Bp×q be two matrices and A ¼
a11 … a1n
… … …
am1 … amn
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increase the frame rate by 4 times. Thus temporal resolution is increased
without sacrificing spatial resolution (there is a slight deterioration in
image quality owing to under-sampling of the K-space).

The first studies that reconstructed dynamic MRI sequences from
under-sampled K-space data exploited the sparsity of the image
sequence in a transform domain in order to reconstruct it [3–9].
Later on, it was argued that since the frames are correlated with
each other, the whole sequence (when expressed as a matrix whose
columns are the frames in vector form) can be expressed in terms of
very few temporal basis functions. Under this assumption the
sequence can be modeled as a low-rank matrix. This assumption
was used in [10,11] to reconstruct the dynamic MRI sequence. The
most recent works in this area combine transform domain sparsity
with low-rank property to reconstruct the sequence [12–14]. These
studies [12–14] have shown to yield better reconstruction results
compared to the previous ones [3–11].

Following previous work [12–14] we model the dynamic MRI
sequence as a matrix which is simultaneously sparse (in a transform
domain) and also has a low-rank. The novelty of our work lies in the
mathematical formulation of the reconstruction problem. We
propose the reconstruction as a least squares optimization problem
which is regularized by the non-convex lp-norm (0bp≤1) as the
sparsity penalty and the non-convex Schatten-q norm (0bq≤1) as
the low-rank penalty. It differs from the previous studies [12–14] in
the choice for sparsity penalty; they used a convex l1-norm as the
sparsity penalty where as we have used a non-convex lp-norm. The
proposed change in the sparsity penalty leads to significant
improvements in the reconstruction results.

Understanding the differences between our proposed method
and the existing ones is easier when the background literature in
dynamic MRI reconstruction from under-sampled K-space data is
known. We will briefly review the literature in this area in the
following section. Our proposed method is discussed in section 3.
Our proposed formulation requires solving certain optimization
problems which have not been encountered before and therefore
there exists no efficient algorithms to solve them. In section 4, we
derive the algorithms to solve the required optimization problems.
The experimental results will be shown in section 5. The conclusions
of this work are discussed in Section 6.

2. Literature review

The data acquisition model for dynamic MRI (1) can be
expressed as,

Y ¼ RFX þ � ð2Þ

where Y=[y1|…|yT], X=[x1|…|xT], η=[η1=η1|…|ηT], and T is the
total number of frames.

The problem is to recover the dynamic MRI sequence X given the
K-space samples Y. Since, the K-space is partially sampled the
problem (2) is under-determined and therefore does not have a
unique solution. As we mentioned before, to get a physically viable
solution to (2), one needs to have a prior knowledge about X.

In a dynamic MRI sequence the difference between frames arises
from motion (heart beat) or from changes in concentration (cardiac
perfusion). The motion/concentration change is typically concen-
trated only in certain areas of the cross section under study. Thus
along the temporal direction of the sequence, (along rows of X), only
certain areas (corresponding to motion/change in concentration)
have major variations in pixel values while the rest of the areas have
negligible variation. Also the frame images are spatially correlated
(locally).

Under such an assumption on the dynamic MRI sequence, the
signal X will be approximately sparse under several transforms –
1. When the 1D Fourier transform is applied along the temporal
direction, the resultant signal in the x-f1 space will be approxi-
mately sparse since most areas show small variation in pixel
values and will lead to Fourier transform coefficients near to zero;
only the small areas where the variation is high will result in high
valued coefficients. Several studies have used this information to
reconstruct the dynamic MRI sequence [5–7]. Mathematically the
reconstruction problem is formulated as follows:

min
x

I⊗F1D xð Þk k1 subject to Y−RFXk k2F ≤ε ð3Þ

where ||.||F is the Frobenius norm of the matrix, ||.||1 is the l1-norm
of the vector, x is the vectorized forms of X, F1D is the 1D Fourier
transform and ε=TNσ2 assuming that each frame has N pixels.

Here I⊗F1D is the Kronecker product.2 In the original
studies the Kronecker product formulation is not used; we
introduce it here to make the notation more compact. The l1-
norm imposes the sparsity penalty.

2. When temporal differencing is applied on X, the resultant
difference signal is also approximately sparse since most of the
areas with low time variations cancel each other (leading to
zeroes after differencing) while only small areas showingmotion/
change in concentration correspond to high values in the
resulting difference signal. The reconstruction problem formulat-
ed in this work [8] can be expressed as follows:

min
x

TV t xð Þ subject to Y−RFXk k2F ≤ε ð4Þ

where TVt ¼ ∑
N

2

i¼1
∇txij jj j and ∇t denotes the temporal differenti-

ation for the ith pixel.
In essence, the approach in [8] differs only slightly from [5–7].

In [5–7] it is assumed that the signal varies smoothly over time, so
that it is sparse in the temporal Fourier transform. In [8], temporal
Fourier transform is not applied, but the signal is assumed to be
smoothly varying with time with only a finite number of
discontinuities, so that it will be sparse in the temporal
differencing domain.

3. In [5–7] and [8] only the temporal correlation is used. The fact that
each of the frames in the dynamic MRI sequence is spatially
correlated is not utilized.When spatio-temporal correlation of the
dynamicMRI sequence is exploited the resulting reconstruction is
even more accurate. In [3,4] the spatial correlation within each
frame is captured by the wavelet transform (W) and the temporal
correlation is captured by the 1D Fourier transform. These works
reconstructed the dynamic MRI sequence by solving a problem of
the following form:

min
x

W⊗F1D xð Þk k1 subject to Y−RFXk k2F ≤ε ð5Þ

4. Instead of such transforms, the spatio-temporal differencing can
also be used to capture the spatio-temporal redundancy in the
dynamic MRI sequence. This leads to the following optimization
problem [9]:

min
x

∇s⊗∇t xð Þk k1 subject to Y−RFXk k2F ≤ε ð6Þ
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where ∇ s is the finite differencing operator in the spatial domain
and ∇ t is the temporal differencing operator.

There are a few papers [10,11] that assume the signal X to be rank
deficient. Since the columns of X (i.e. image frames) are correlated,
the signal X can be expressed by very few temporal basis functions
and hence it is approximately rank deficient. Based on this
assumption, the matrix X can be recovered by solving the following,

min
X

Xk k�subject to Y−RFXk k2F ≤ε ð7Þ

However in the original work [10,11] the Nuclear Norm was not
used as the objective function for promoting rank deficiency. They
used a power factorization based method instead.

A recent method called ‘k-t SLR’ [12,13] proposes minimization of
a combination of rank-deficiency of the signal in the x-t space and its
sparsity in Spatio-Temporal differencing domain. The following
optimization problem is proposed,

min
X

Y−RFXk k2F þ λ1 ∇s⊗∇t xð Þk k1 þ λ2 Xk kqSq
ð8Þ

Here ‖Y−RFX‖F
2 is the data fidelity term, ‖∇ s⊗∇ t(X)‖1 is the

convex sparsity penalty and the non-convex Schatten-q norm Xk kqSq

is the penalty on rank-deficiency. The constants λ1 and λ2 control the
relative importance of the sparsity and rank-deficiency penalties.
The k-t SLR method yields better results than other reconstruction
techniques; this is because they combine sparsity with the low-rank
property instead of using only one of them.

Following the success of k-t SLR, a recent work proposed a variation
[14]. The fundamental idea remains the same (combining sparsity with
rank-deficiency) but it differs from k-t SLR in two aspects –

1. Instead of assuming the signal to be sparse in the spatio-temporal
differencing domain, it was assumed to be sparse in the x-f space.

2. Instead of using Schatten-q norm as the penalty on rank-
deficiency, a power factorization based method was used to
account for the low-rank property.

3. Proposed approach

Our work follows from k-t SLR [12,13] and the method proposed
in [14]. The basic assumption is the same, i.e. the signal X is
simultaneously sparse (in a transform domain) and low-rank. We
propose an improvement over the previous studies. Before explain-
ing the improvement, we will have a closer look at the reconstruc-
tion problems. The k-t SLR [12,13] assumes that the signal is sparse
under spatio-temporal differencing and requires solving the follow-
ing problem:

min
X

Y−RFXk k2F þ λ1 ∇s⊗∇t xð Þk k1 þ λ2 Xk kqSq
ð9Þ

The other study [14] assumes that the signal is sparse in the x-f space
and therefore requires solving a problem of the following form:

min
X

Y−RFXk k2F þ λ1 I⊗F1D xð Þk k1 þ λ2 Xk kqSq
ð10Þ

In Eqs. (9) and (10), the l1-norm imposes the sparsity penalty and
the Schatten-q norm imposes the low-rank penalty. Strictly
speaking, the original study [14] did not employ a Schatten-q
norm but used a power factorization based method instead. The
power factorization based method is non-convex and approximately
solves the Schatten-q norm minimization problem.

The idea of using the l1-norm for sparse recovery follows from
Compressed Sensing [15,16]. Ideally the sparsity penalty should be
the l0-norm; however solving the l0-norm minimization problem is
NP hard. The l1-norm is the nearest convex envelope for the l0-
norm; theoretical studies in Compressed Sensing have shown that
the convex l1-norm will be a good substitute for the NP hard l0-
norm for a wide range of problems. Owing to the convexity,
problems involving l1-norms are is easy to be analysed and
implemented. However studies in non-convex Compressed Sensing
[17–19] showed that if instead of the convex l1-norm, a non-convex
lp-norm (0bp≤1) is used, then better recovery results can be
guaranteed. This is because the non-convex lp-norm is a closer
surrogate to the NP hard l0-norm than the convex l1-norm. The
theoretical results in lp -norm minimization prompted researchers
in MRI reconstruction to experiment with such non-convex
penalties [2,20,21]. They found that, better reconstruction results
can be indeed be obtained by replacing the convex l1-norm by the
non-convex lp-norm.

Following the success of non-convex lp-norm over convex l1-
norm in sparse recovery problems of static MRI, we propose to
replace the convex l1-norms in (9) and (10) by their non-convex
counterparts (lp-norm). In this work, we propose to recover the
dynamic MRI sequence by solving the following optimization
problems:

min
X

Y−RFXk k2F þ λ1 ∇s⊗∇t xð Þk kpp þ λ2 Xk kqSq
ð11Þ

min
X

Y−RFXk k2F þ λ1 I⊗F1D xð Þk kpp þ λ2 Xk kqSq
ð12Þ

Here (11) and (12) are counterparts of [12,13] and [14]
respectively but with l1-norms replaced by lp-norms. There is a
simpler formulation to (12). The x-f space I⊗F1D(x) can also be
expressed as F1DXT. Therefore, (12) can be alternately expressed as:

min
X

Y−RFXk k2F þ λ1 F1DX
T

��� ���p
p
þ λ2 X

T
��� ���q

Sq

ð13Þ

We replace the Schatten-q norm in (13) by its equivalent Ky-Fan
norm ( Uk kqSq

¼ Tr UTU
� �q=2) and substitute Z=F1DX

T. Using these
substitutions (13) takes the following form:

min
Z

Y−RFZ F1Dk k2F þ λ1 Zk kpp þ λ2Tr Z
T
Z

� �
q=2 ð14Þ

Since FT
1DZ

�� ��q
Sq

¼ Tr ZT F1D F
T
1DZ

� �q=2 ¼ Tr ZTZ
� �q=2 because

F1D is an orthogonal transform.
Using the Kronecker product notation, the term ‖Y−RFZF1D‖F

2 in
(14) can be expressed as, ‖y−F1D

T ⊗RFz‖2
2 where z=vec(Z) and y=

vec(Y), i.e. the operator ‘vec’ converts a matrix to a vector by row/
column concatenation.

Using these substitutions, we obtain the simplified version of (12):

min
z

y−F
T
1D⊗RFz

��� ���2
2
þ λ1 zk kpp þ λ2Tr Z

T
Z

� �
q=2 ð15Þ

It is not possible to simplify (11) owing to the non-
separability of the differencing operation. But the Schatten-q
norm in (11) can be replaced by its equivalent Ky-Fan norm
leading to the following:

min
X

Y−RFXk k2F þ λ1 ∇s⊗∇t xð Þk kpp þ λ2Tr X
T
X

� �
q=2 ð16Þ

The problem (15) turns out to be a synthesis prior problem,
whereas (16) is an analysis prior problem [22]. The terms synthesis
and analysis priors only apply to the sparsity penalties. Unfortu-
nately there are no algorithms to solve either (15) or (16); thus we
need to derive them. In the following section, we derive efficient
algorithms to solve these.
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4. Optimization algorithms

In this section we derive algorithms to solve (15) and (16). The
derivation is based on the Majorization Minimization approach [22].
The generic MM algorithm is as follows:

Let J(x) be the (scalar) function to be minimized

1. Set iteration count k=0 and initialize x0.
a. Repeat step 2-4 until a suitable stopping criterion is met.

2. Choose Gk(x) such that
a. Gk(x)≥ J(x) for all x.
b. Gk(xk)= J(xk).

3. Set xk+1 as the minimizer for Gk(x).
4. Set k=k+1, go to step 2.

4.1. Solving the synthesis prior problem

For our problem the function to be minimized is

J xð Þ ¼ y−Axk k22 þ λ1 xk kpp þ λ2Tr X
T
X

� �
q=2

Here A=F1D
T ⊗RF and X=Z. These substitutions are made to

make the notations simpler.
There is no closed form solution to J(x), it must be solved

iteratively. At each iteration we choose,

Gk xð Þ ¼ jjy−Axjj22 þ x−xkð Þt aI−A
T
A

� �
x−xkð Þ þ λ1 xk kpp

þ λ2Tr X
T
X

� �
q=2 ð17Þ

Gk(x) satisfies the condition for MM algorithm when
a≥max eigvalue(ATA).

Now Gk(x) can be alternately expressed as follows,

Gk xð Þ ¼ a xk þ
1
a
A

T
y−Axð Þ−x

����
����
2

2
þ λ1 xk kpp þ λ2Tr X

T
X

� �
q=2 þK

ð18Þ

where K consists of terms independent of x.
Minimizing (18) is the same as minimizing the following,

G
0

k xð Þ ¼ b−xk k22 þ
λ1

a
xk kpp þ

λ2

a
Tr X

T
X

� �
q=2 ð19Þ

where b ¼ xk þ 1
a A

T y−Axkð Þ.
To minimize (19) we take its derivative,

∇G
0

k xð Þ ¼ 2x−2bþ λ1

a
p xj jp−2⋅x þ λ2

2a
q XX

T
� �q

2−1
X ð20Þ

where ‘.’ denotes element wise product.
Setting the gradient to zero, one gets,

I þDð Þx ¼ b ð21Þ

where D ¼ λ1
2a pDiag xj jp−2

� �
þ λ2

4a qI⊗ XXT
� �q

2−1.
Here the Diag operator creates a diagonal matrix out of the

vector |x|p-2.
The problem (21) represents a system of linear equations. It

should be noted that the system (I+D) is symmetric. Hence it
can be efficiently solved by newly developed MINRES-QLP
algorithm [23].

Based on this derivation, we propose the following algorithm to
solve (15).
Intitialize: x0=0
Repeat until: ‖y−Ax‖2

2≤ε
Step 1. b ¼ xk þ 1

a A
T y−Axkð Þ

Step 2. D ¼ λ1
2a pDiag xk−1j jp−2

� �
þ λ2

4a qI⊗ Xk−1X
T
k−1

� �q
2−1

Step 3. Compute x by solving (I+D)x=b
End
4.2. Solving the analysis prior problem

The task is to solve Eq. (16). For ease of representation, we
express it in the following form:

min
X

Y−AXk k2F þ λ1 Hxk kpp þ λ2Tr X
T
X

� �
q=2 ð22Þ

where A=RF and H=∇ s⊗∇ t.
The function to be minimized is the following:

J Xð Þ ¼ Y−AXk k2F þ λ1 Hxk kpp þ λ2Tr X
T
X

� �
q=2 ð23Þ

Following the Majorization Minimization approach at each
iteration we choose,

Gk xð Þ ¼ Y−AXk k2F þ x−xkð Þt aI−A
T
A

� �
X−Xkð Þ þ λ1 Hxk kpp

þ λ2Tr X
T
X

� �
q=2 ð24Þ

Gk(x) satisfies the condition for MM algorithm when
a≥max eigvalue(ATA)

Now Gk(x) can be alternately expressed as follows,

Gk xð Þ ¼ a Xk þ
1
a
A

T
Y−AXð Þ−X

����
����
2

2
þ λ1 Hxk kpp

þ λ2Tr X
T
X

� �
q=2 þK ð25Þ

where K consists of terms independent of x.
Minimizing (25) is the same as minimizing the following,

G
0

k xð Þ ¼ B−Xk k22 þ
λ1

a
Hxk kpp þ

λ2

a
Tr X

T
X

� �
q=2 ð26Þ

where B ¼ Xk þ 1
a A

T Y−AXkð Þ.
To minimize (26), we take its derivative,

∇G
0

k xð Þ ¼ 2X−2B þ λ1

a
H

T
�Hx þ λ2

2a
q XX

T
� �q

2−1
X ;

where � ¼ diag pjHxjp−2
� � ð27Þ

Setting the gradient to zero, one gets

I þ λ1

2a
H

T
�H þ λ2

4a
qI⊗ XX

T
� �q

2−1
� �

x ¼ b;where b ¼ vec Bð Þ ð28Þ

Since Eq. (28) is not separable like Eq. (20), finding the solution
for the analysis prior problem is slightly more involved than the
synthesis prior one. We express Eq. (28) as follows:

M þ λ1

2a
H

T
�H

� �
x ¼ b;whereM ¼ I þ λ2

4a
qI⊗ XX

T
� �q

2−1 ð29Þ



Table 1
Reconstruction accuracy in NMSE.

Method → k-t SLR [12,13] [14] Proposed analysis Proposed synthesis

Dataset 1 0.13 0.12 0.09 0.08
Dataset 2 0.12 0.12 0.08 0.08
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Using the matrix inversion lemma,

M þ λ1

2a
H

T
�H

� �−1

¼ M
−1−M

−1
H

T 2a
λ1

�
−1 þHM

−1
H

T
� �−1

HM
−1

Therefore we have the following identity,

x ¼ M
−1

b−M
−1

H
T 2a

λ1
�

−1 þHM
−1

H
T

� �−1
HM

−1
b ð30Þ

Or equivalently,

z ¼ 2a
λ1

�
−1 þ HM

−1
H

T
� �−1

HM
−1

b ð31Þ

x ¼ M
−1

b−M
−1

H
T
z ð32Þ

Solving z requires solving the following,

z̃ ¼ 2a
λ1

�
−1 þHM

−1
H

T
� �−1

HM
−1=2

b; z ¼ M
−1=2

z̃ ð33Þ

Here M−1/2 is the Cholesky decomposition of M. The decompo-
sition exists sinceM is symmetric positive definite (follows from the
definition of M in (29)).

It is possible to solve~z by Conjugate Gradient method [24]. Once~z
is solved, finding the value of x is straightforward.

This derivation leads to the following iterative algorithm:
Intitialize: x0=0
Repeat until: ‖y−Ax‖2

2≤ε
Step 1. B ¼ Xk þ 1

a A
T Y−AXkð Þ

Step 2. M ¼ I þ λ2
4a qI⊗ XXT

� �q
2−1

; b ¼ vec Bð Þ
Step 3. Solve: z̃ ¼ 2a

λ1
�−1 þHM−1HT

� �−1
HM−1=2b

Step 4. Compute: z ¼ M−1=2 z̃

Step 5. Compute: x=M−1b−M−1HTz
End
Table 2
Results of t-test (h-values of pair-wise t-test).

Pair-wise
tests →

k-t SLR &
[14]

k-t SLR &
proposed
analysis

k-t SLR &
proposed
synthesis

Proposed
analysis &
[14]

Proposed
synthesis
& [14]

Proposed
analysis &
proposed
synthesis

Dataset 1 1 0 0 0 0 1
Dataset 2 1 0 0 0 0 1
5. Experimental results

In this work, we compare our method with two state-of-the-art
methods in dynamic MRI reconstruction, that are based on
exploiting the transform domain sparsity and the rank-deficiency
of the image sequence [12,13] and [14]. In [12,13], the sparsity
penalty is the l1-norm on the Spatio-temporal TV (total variation)
and the rank-deficiency penalty is on the Schatten-q norm; this
method is known as the k-t SLR. In [14] the sparsity penalty is the
l1-norm on the x-f space and the rank-deficiency is exploited via a
power factorization based method which is similar to the
Schatten-q norm.

All the methods require specification of the two parameters λ1

and λ2 – they control the relative importance of the sparsity and the
low-rank penalties respectively. Unfortunately these parameters
cannot be determined based on rigorous optimization theory. They
need to be tuned. The tuning mechanisms for determining these
values are not clearly mentioned in [12–14]. Therefore in this work,
we follow a tuning methodology outlined in [9]. In the first step we
determine the value of λ1; to obtain λ1 we put λ2 to zero. Thus we
only use the sparsity constraint. The value of λ1 is determined by
using the L-curve method [25] (after putting λ2 to zero). Once the
value of λ1 is fixed, the value of λ2 is then chosen by minimizing the
error in the reconstruction, as compared with ground-truth.
Effectively this means that the value of λ2 has to be determined by
manual tuning. For our algorithm, we also need to specify the value
of ε; in this work it is assumed that the K-space data is not corrupted
by noise hence ε is fixed at a small value of 10-3.

In [12,13] a value of q=0.1 is used for the Schatten-q norm.
We use the same value of q for our proposed method. Our method
also requires specifying the value of p in the lp-norm; we use p=
0.1. We carried out simple t-tests to determine the sensitivity of
reconstruction accuracy to changes in value of p. We found that as
long as p is between 0.1 and 0.3, the reconstruction accuracy does
not significantly differ at 95% confidence level. But for higher
values of p (0.5 and above) the reconstruction accuracy changes
(deteriorates) significantly.

The Dynamic Contrast Enhanced (DCE) MRI data was collected
from a 7 T Tesla Bruker MRI scanner at the University of British
Columbia. Two datasets were acquired. The data was collected for
studying subcutaneous tumor on the back of rats. The images are of
size 128 × 64 pixels, and the time difference between acquisitions of
two successive frames is 2.5 seconds. For each sequence, 1200
frames were acquired. The ground-truth images consisted of fully
sampled K-space data. The same datasets were used for experiments
on dynamic MRI reconstruction in [26].

For our experiments, partial K-space sampling was simulated by
Variable Density randomly sampling, i.e., by omitting samples along
the vertical direction. Experiments are carried out at an acceleration
factor of 2 (50% sampling).

Results for quantitative evaluation are reported in Table 1. We
report the Normalized Mean Squared Error (NMSE= ‖recon-
structed−groundtruth‖2/‖groundtruth‖2) for the whole dataset; i.e.
the groundtruth signal consists of all the frames of the fully sampled
K-space data and the reconstructed signal consists of all the frames
reconstructed from partially sampled K-space data. As mentioned
before, we compare our work with k-t SLR [12,13] and [14].

In order to test if the reconstruction error varies significantly we
carried out t-tests. The pair-wise t-tests were carried out at 95%
confidence level. The null hypothesis to be tested is: the reconstruc-
tion error between the compared pair of methods does not vary
significantly. Results of the hypothesis testing are shown in Table 2.

From Table 2, it can be inferred that at 95% confidence level:

• The reconstruction error from k-t SLR [12,13] and [14] does not
vary significantly.



Fig. 1. Reconstructed Images. Left to Right – Groundtruth, k-t SLR [12,13] reconstruction, [14] reconstruction, proposed analysis prior, proposed synthesis prior.

Fig. 2. Difference Images. Left to Right – k-t SLR [12,13] reconstruction, [14] reconstruction, proposed analysis prior, proposed synthesis prior.
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• The k-t SLR [12,13] and the [14] yields significantly different
(worse) reconstruction error compared to the proposed analysis
and the synthesis prior methods.

• The reconstruction error from our proposed analysis and synthesis
prior methods does not vary significantly.

Numerical results do not always provide the true nature of
reconstruction. Therefore we provide qualitative reconstruction
results from the experiments. For qualitative evaluation we
randomly selected frame number 1096 from the dataset and frame
number 283 from the second dataset. The reconstructed images and
difference images (between groundtruth and reconstructed images)
are shown in Figs. 1 and 2 respectively.

In Fig. 1 we have encircled the areas that show reconstruction
artifacts. These are clearly visible in the reconstruction from the k-t
SLR and the method proposed in [14]. Our proposed methods yield
considerably better results; they do not show such distinct
reconstruction artifacts. The superiority of our proposed methods
can also be discerned from the difference images in Fig. 2. The
difference images from k-t SLR and the method proposed in [14]
show higher reconstruction error (brighter difference images)
compared to ours (darker difference images). The qualitative results
corroborate our inferences from quantitative analysis.

6. Conclusion

Recent techniques in dynamic MRI reconstruction (from under-
sampled K-space data) [12–14] exploit the spatio-temporal correla-
tion in the dynamicMRI sequence by posing the recovery problem as
a least squares optimizationwith sparse (in a transform domain) and
low-rank penalties. In [12,13] the sparsity is assumed to be in the
spatio-temporal differencing domain and in [14] it is assumed to be
in the x-f space.

Ideally the sparsity and low-rank penalties should be expressed
in terms of the l0-norm and the rank of matrix respectively. However
both the l0-norm and rank of matrix are NP hard penalties and thus
are not feasible to be solved for practical problems. In the previous
works [12–14] the l0-norm is substituted by its convex surrogate the
l1-norm and the rank is substituted by its non-convex surrogate the
Schatten-q norm (0bq≤1).

Previous studies in static MRI reconstruction [2,20,21] have
showed that if non-convex sparsity penalty in the form of lp-norm
(0bp≤1) is used instead of the convex l1-norm, better image
reconstruction can be obtained. Following these studies we
proposed to substitute the l1-norm sparsity penalty in [12–14]
by its non-convex counterpart – the lp-norm. Thus our formula-
tion for recovering the dynamic MRI sequence (from under-
sampled K-space data) requires solving a least squares problem
regularized by an lp-norm and a Schatten-q norm. Depending on
the sparsifying transform the lp-norm can either be on a synthesis
prior or on an analysis prior. Unfortunately there are no efficient
algorithms to solve either the synthesis prior or the analysis prior
problem. Thus in this work, we had to derive efficient algorithms
to solve the said problems.

We carried out the experiments on two DCE MRI datasets that
studied subcutaneous tumor on the back of rats. We compared our
proposed methods with state-of-the-art techniques in dynamic MRI
reconstruction that uses both sparsity and low-rank penalties for
recovery [12–14]. Simple statistical analysis shows that our method
is significantly better than existing ones. We also provide the
reconstructed images for qualitative evaluation. It is clearly seen
from the images that the aforementioned methods [12–14] show
discernible reconstruction artifacts while our methods do not.
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