
Accelerating Low-Rank Matrix Completion on GPUs

Achal Shah* and Angshul Majumdart
*Indian Institute of Technology, Guwahati

tIndraprastha Institute of Information Technology, Delhi

Abstract-Latent factor models formulate collaborative filter­
ing as a matrix factorization problem. However, matrix factoriza­
tion is a bi-linear problem with no global convergence guarantees.
In recent years, research has shown that the same problem can
be recast as a low-rank matrix completion problem. The resulting

algorithms, however, are sequential in nature and computationally
expensive. In this work we modify and parallelize a well known
matrix completion algorithm so that it can be implemented on
a GPu. The speed-up is significant and improves as the size of
the dataset increases; there is no change in accuracy between the
sequential and our proposed parallel implementation.

Keywords-Matrix Completion, Recommendation Systems, Col­
loborative Filtering, Graphics Processing Units

I. INTRODUCTION

In this work, we revisit the collaborative filtering approach
to recommender systems that has, in recent years, enjoyed
the attention of the research community. The problem of
recovering a (approximately) low-rank matrix from its under­
sampled projections is prevalent in many areas of engineering
and applied science, including machine learning [1], [3], [5]
and computer vision [31]. As an example, let us consider the
Nettlix problem [2], where the users provide ratings for a
subset of the available items, and the objective is to infer their
preference for the remaining content. The available ratings
matrix, in such a scenario, is very sparse since the users can
only be expected to rate a few items each. Recovering the
matrix, given this limited sample of its entries, is extremely
ill-posed as we may have infinitely many completions.

The latent factor model assumes that there are f underlying
factors, contributing to a user's taste or preference, that are
responsible for the user's rating on an item. The item is
characterized by a vector v j x 1 which encapsulates the extent
to which each of the f factors are present in it. The user is
characterized by a vector U j x 1 which consists of the user's
affinity towards each of the f factors. Thus, the rating of
user i on the item j is simply the inner product between the
corresponding v and u;

(1)

We now consider the matrix of ratings from all users on
all items. Let us assume that there are M users and N items.
If we stack all the user' affinities (u's) as rows of a matrix
UMxj and all the items' v's as rows of a matrix VMxj, the
full ratings matrix is represented as,

(2)

When the number of users (M) and number of items (N)
is much larger than the number of factors (which is typically
the case in any practical collaborative filtering problem) the

978-1-4799-3080-7114/$31.00 ©2014 IEEE

matrix X is low-rank (of rank f). Since all the ratings are
not available, X is only partially full. Thus, in collaborative
filtering, the problem is to find all the ratings in X knowing
that it is low-rank.

Let Sl be the set of indices where the matrix X is observed,
i.e. where the ratings are available. Then we can define a
sampling operator A on the set Sl. The observation model for
collaborative filtering can thus be succinctly represented as,

Ymxl = A(XMxN), A: m.MxN --+ m.m (3)

The problem is to recover X given the observations Y and
the sampling operator A.

Since the matrix X is known to be low-rank, the straight­
forward approach to solve the above is to minimize X's rank
subject to data constraints.

min rank (X) subject to Y = A(X)
x

(4)

Unfortunately solving the above formulation exactly is
an NP-hard problem with doubly exponential complexity.
Theoretical studies [8], [9] argue that it is possible to recover
the correct solution (a low rank matrix) by replacing the NP­
hard objective function (rank of a matrix) in (4) by its closest
convex envelope - the nuclear norm:

�n IIXII. subject to y = A(X); IIXII. = L 100ii (5)

where O';'s are the singular values of X and there are r(<<
M, N) such singular values.

This paper contributes to the line of work concerned with
developing algorithmic frameworks to solve (5) for large-scale
problems. The amount of available information has increased
faster than our ability to process it. It is no longer feasible
to rely on improvements in processors to speed-up matrix
estimation algorithms, and as a result, we have moved towards
a model where we have more processors that can work in paral­
lel. In this paper, we modify a well-known matrix completion
algorithm using the principles of parallel stochastic gradient
descent, and then accelerate it by harnessing the 'processing
parallelism' of modern Graphics Processing Units (GPUs).

The rest of the paper is organized into several sections.
The existing literature is briefly reviewed in the following
section. The proposed methodology is discussed in section 3.
We examine the experimental results in section 4. Finally, we
discuss the conclusions of this work in section 5.

182

II. RELATED WORK

There have been a handful of attempts in the past [7],
[18], [21], [22], [30], [25] to address the matrix completion
problem, but these techniques are computationally intensive
and prove to be impractical as the size of the data approaches
the scale commonly used in practice (such as by internet
retailers). A few methods, such as [27], try to factorize the
ratings matrix into a user latent factor matrix and an item latent
factor matrix. These methods rely on an inherent low-rank
parameterization, which leads to a bi-linear (and hence non­
convex) formulation of the optimization problem. While such
problems are computationally more efficient to solve, they lack
global convergence guarantees and the solutions, in general,
may be highly sensitive to initialization.

One way to scale-up these algorithms to larger datasets,
is by leveraging the computational horse-power provided by
Graphics Processing Units. Modern GPUs have gained popu­
larity as low-cost platforms for massively parallel computation.
The availability of high-level programming languages such as
CUDA [26] and OpenCL [19] has lowered the programming
barrier for the GPU. As a result, GPUs are now seen as high
performance multi-core processors and have found extensive
use in general-purpose computation [13]. In this work, we
modify the well-known iterative thresholding algorithm, and
present a method to parallelize and implement the algorithm
on a GPU.

III. PROPOSED ALGORITHM

In this section, we develop the algorithmic framework to
solve the matrix completion problem for large matrices.

The optimization problem (5) can be approximated as the
following relaxed problem:

min IIXII. subject to Ily - A(X)II} < E
x

(6)

where II * II} denotes the Frobenius norm of a matrix, and E
is the tolerable limit of error in reconstruction. We initially
consider the unconstrained lagrangian version of the problem,
which is easier to solve:

min Ily - A(X)II} + ,\IIXII. x
(7)

A more convenient representation is:

min Ily - Axil} + ,\IIXII. (8) x
where XMNxl is the vectorized form of matrix XMxN, A :
lRMxN

-+ lRm is a restriction operator, and Ym is the vector
of measurements.

A. Optimization Transfer

The required optimization problem (8) can be solved by
minimizing the following at each iteration:

where

2 ,\ Gk(x) = Ilx - xkl 12 + -IIXII. 0;

1 T Xk = Xk-l + -A (y - A Xk-d
0;

(9)

Corel Core, 8 B8

\ � ,.'" "'H + ;;;A""(Y'" -A""._.) I
Xk(l) = Xk-l + __ A(I)T(y(l) -A(l)Xk_l)

11
I ya

Fig. l. Parallelizalion strategy for the landweber iteration

In the above formulation, Xk is defined in each land weber
iteration based on the value of x from the previous iteration;
0; is the step size and usually is set at max eigenvalue (A T A).

The equivalence of (8) and (9) is not trivial, and the deriva­
tion is based on the majorization-minimization approach [28],
[33]. We have refrained from presenting the derivation here
due to the limited availability of space within this conference
paper. The interested reader is encouraged to go through the
relevant references.

Given the definition of the Frobenius norm, and the
property that both x and Xk have the same left and right
singular vector, minimizing the above equation is the same
as minimizing the following:

(lO)

where s and Sk are the singular values of the matrices
corresponding to x and Xk respectively. This can now be
decoupled, and minimized using term-wise differentiation, by
the following (soft-thresholding):

S = signum(sk) max(O, ISkl- �)
20;

(11)

This is a modified form of the iterative soft-thresholding algo­
rithm used in compressive sensing for h norm minimization.

B. The Shrinkage Algorithm

We find that the algorithm consists of the following four
major steps:

1) Landweber iteration (to solve the partial least squares
problem)

2) Computing the singular value decomposition (SVD)
3) Soft-thresholding the singular values
4) Recombination of the thresholded singular values with the

left and right singular matrices

We initially focus on parallelizing the land weber iteration,
which is inherently sequential in nature. To do so, we make use
of a gradient descent optimization method based on stochastic
optimization, known as the stochastic gradient descent. A
similar approach was used in [29] as well, for parallelizing
sparse recovery algorithms.

The landweber iteration is given by:

1 21 Xk = Xk-l + - llxllY - AxI 12 _ 20; X-Xk-l
(12)

2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 183

Such an iteration can be represented as the
gradient descent step:

following

1 2 1 Xk = Xk-l + - �xlly - AxI 12 _ 2a X-Xk-J (13)

In stochastic gradient descent [6], [11], [10] the gradient
of a function is approximated by its stochastic version. This
means that in each iteration of the algorithm, the gradient is
computed on a small batch of samples instead of the entire
data. An extreme case is when the gradient is computed on a
single sample. The relation between the gradient on the entire
data, given by 9, and the stochastic gradient, given by 98' can
be expressed as follows:

9 = 98 + e (14)

The error between the two gradients is represented as a random
variable e. In accordance to the theory of stochastic gradient
descent, as shown in [6], [11], [10], we have:

E(e) = 0 (15)

where E(e) denotes the expected value of the random variable
e. It has been further shown that the stochastic gradient
converges to the gradient computed on the entire data as
determined by the second order moment.

The principles of stochastic gradient descent can be applied
to the landweber iteration. Therefore, we can run stochastic
land weber iterations in parallel, on parts of the data, instead
of calculating the land weber update on the entire data. We
can then closely approximate the full land weber update by
aggregating the individual stochastic land weber updates (as the
error is expected to asymptotically reach zero).

We propose the use of the following two-step process in
place of the original iteration:

1) Compute stochastic landweber updates, in parallel, on
small samples of the data.

2) Aggregate the stochastic land weber updates to estimate
the land weber update on the entire data.

Each stochastic landweber update can computed indepen­
dently in a separate core. The proposed stochastic version of
the iteration is illustrated in Algorithm 1.

Algorithm 1 Parallel Stochastic Landweber Iteration

I: N +- number of processing units available
2: m +- total number of samples (each row of y is considered

a sample)
3: 'Y +- sampling factor (-h ::; 'Y ::; 1)
4: for all i E {l, . . N}, in parallel do
5: Xki) +- xk-l + l�A(i)T(y(i) - A(i)Xk_l), where y(i)

denotes the random1y chosen subset of the rows in y and
A (i) denotes the corresponding rows in A

6: end for
7: Aggregate from all the units, Xk +- -h L:[:l Xki)
8: return xk

The next steps consist of a singular value decomposition
followed by the soft-thresholding of the singular values of
X. Soft-thresholding is an element-wise operation and is
embarrassingly parallel. The computational bottleneck here is

the singular value decomposition. The mathematical structure
of the SVD makes it a suitable candidate for parallelization
on GPUs, and a variety of approaches have been explored in
literature [4], [12], [14], [15], [20].

In our implementation, we make use of the commercial
GPU linear algebra library, CULA [17], for SVD computation.
The CULA library was chosen as it provides stable and reliable
GPU algorithms. In addition, it enables greater control on the
transfer of data to and from the GPU, by exposing a device
interface to operate directly on matrices residing within the
GPU memory.

The proposed Shrinkage Algorithm, for the unconstrained
optimization problem (8), is given in Algorithm 2.

Algorithm 2 Proposed Shrinkage Algorithm

I: Initialize XQ, and set k +- 0
2: while k < kmax do
3: k +- k + 1
4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

Compute the objective function, Jk-1:
Jk-1 +- Ily - AXk-1II� + AIIXk-1 1 1*
xk +- parallel stochastic land weber iteration
Reshape Xk to form the matrix Xk
GPU Accelerated SVD: Xk = U�VT

Soft-threshold: t +- soft(diag(�), 2)..)
A Q

Reconstruct Xk: Xk +- U�VT

Form Xk by vectorizing Xk
Compute the objective function, Jk:
Jk +- Ily - AXkll� + AIIXkll*
if (Jk-1 - Jk)/(Jk-1 + Jk) < Tol then

break
end if

15: end while
16: return Xk

C. Constrained Optimization via Cooling

We have, so far, discussed a solution for the unconstrained
optimization problem (7). Our objective remains, however, to
solve the constrained problem (6).

The parameters A and E are related, but for most problems,
this relation is not analytic and is difficult to find without loss
of generalization; it is not possible to obtain the parameter
A if E is available. To address this issue, a cooling strategy
is usually employed [23], [24]. We start with a high value
of A and solve the quadratic programming problem (QP) for
the given value. In the next iteration we decrease the value
of A and solve the QP once more. The complete constrained
optimization algorithm, along with the cooling technique, is
illustrated in Algorithm 3.

The above mentioned algorithm makes use of the following
two loops: The first loop is present within the shrinkage
algorithm and minimizes (8) for a given value of A. This loop
terminates when the relative change in the objective function,
(Jk-l - Jk)/(Jk-l + Jk), is less than the allowed tolerance,
or after running for a fixed number of iterations. The second is
the outer loop that decreases the value of A and exits when the
error in reconstruction falls below the tolerable limit of error,

Ily - AxI 12 ::; E, or if A attains its minimum value.

184 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

Algorithm 3 Con trained Optimization via Cooling

1: Initialize x +- 0, A < max(AT y)
2: Choose DecFac, the decrease factor for cooling A
3: Transfer the sampled entries y, the initial x and other

required parameters to the GPU
4: while Ily - Axl 12 > E do
5: Obtain X by using the proposed shrinkage algorithm

for the current value of A
6: A +- A * DecFac
7: if A < Amin then
8: break
9: end if

10: end while
11: Transfer the recovered matrix X back to the CPU

TM CUOA Programming Model

Fig. 2. The CUDA hardware model and programming model [16]

D. CUDA Implementation

We briefly discuss the CUDA programming and hardware
models, and then describe the implementation of our proposed
approach.

The CUDA Architecture: In the CUDA programming
model, a software CUDA block is mapped to a hardware
CUDA multiprocessor, as shown in Figure 2. When multiple
blocks are assigned to a multiprocessor, the CUDA program­
ming environment determines how the blocks are shared within
the multiprocessor. Each multiprocessor consists of a series of
processing units along with a small shared memory.

CUDA is based on the Single Instruction Multiple Data
(SIMD) model, which means that the same instruction is
executed by the processor on different data at a time. The
CUDA platform is accessible to developers through CUDA
C/C++ APIs. The CUDA device acts as a multi-core processor,
where threads run in parallel in batches of warp size.

If a group of blocks is assigned to a single multiprocessor,
the available shared memory and registers are split equally
amongst the blocks. A block consists of a group of threads,
that run in parallel when the block is executed. Each thread
executes a single instruction set called the kernel. Each block
is assigned an ID, and each thread is assigned a unique ID
within the block. These IDs can be accessed from within the
kernel function, and are used together to operate on a part of
the data.

The interested reader is encouraged to refer to [26] for
more details about CUDA programming.

TABLE J. MOVIELENS lOOK: 1682 x 943

Matrix
Proposed Sequential

Speedup
Time(s) NMAE Time(s) NMAE

MI 719.94 0.70138 1632.6 0.70142 2.2676

M2 722.17 0.70196 1630.2 0.70197 2.2573

M3 698.65 0.69742 1618.8 0.69743 2.3170

M4 716.62 0.69863 1633.7 0.69868 2.2797

M5 705.04 0.69849 1604.0 0.69854 2.2750

Implementation Details: We make use of the CUDA-based
CUBLAS library to implement linear algebra routines, and
the (dense) free version of the commercial GPU-based linear
algebra toolkit, CULA [17], for the SVD computation.

The performance of GPU libraries, and BLAS in general,
is highly dependent on data placement and its movement. The
bandwidth between the CPU and the GPU is usually much
lower than the internal bandwidth of the GPU device, and it
therefore important that data transfers to and from the GPU
device be minimized. We transfer the input data (the sampled
entries, the initialized matrix and other parameters) to the GPU
at the very beginning of the algorithm. The data is then kept
in the GPU memory and operated upon directly using the
available device interfaces, to avoid the cost of transferring
data between the host and the GPU device in each iteration.
Upon convergence of the algorithm, the recovered matrix is
transferred back to the host. The input matrix XMxN is stored
on the GPU as a 1-D array of size M x N, in a column-major
format. This eliminates the need to reshape the vector Xk to
matrix Xk (as in step 6 of the shrinkage algorithm) and to
vectorize the matrix Xk (as in step 10) in each iteration.

The parallel stochastic land weber iteration is implemented

using a custom kernel. Each element of x�i) is updated by a
single thread. The aggregated Xk is then obtained by a custom
aggregation kernel.

Following the SVD computation using the CULA library,
a 1-D vector of singular values, I;, is obtained. Since soft­
thresholding is an element-wise operation, it is aptly suited to
the massively multi-threaded CUDA SIMD architecture. The
soft-threshold operation on the singular values is implemented
using a custom kernel, where each singular value is acted upon
by a single thread.

The subsequent reconstruction of the matrix Xk com­
prises of two linear algebra routines, implemented using the
CUBLAS library. The first routine scales the columns of the
matrix U with the corresponding, thresholded singular values.
The second routine multiplies the scaled matrix (j with VT.
These routines accelerate the reconstruction by leveraging the
speed-ups in matrix-vector products offered by the GPU.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed algorithm, we
used the freely available MovieLens datasets [32]. The Movie­
Lens datasets consist of user-provided ratings for movies, and
were collected by the GroupLens Research Project at the
University of Minnesota.

For our experiments, we used the MovieLens lOOK and the
MovieLens 1M datasets. The smaller dataset (lOOK) consists

2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 185

TABLE II. MOVIELENS 1M: 6040 x 3952

Matrix
Proposed Sequential

Speedup
Time(s) NMAE Time(s) NMAE

MI 11391 0.70914 99287 0.70919 8.7162

M2 11218 0.70901 97878 0.70906 8.7250

M3 11201 0.70877 96326 0.70882 8.5997

M4 11460 0.70925 92997 0.70935 8.1149

M5 11272 0.70909 94673 0.70916 8.3989

of 100,000 ratings from 943 users on 1682 movies, while
the latter (1M) contains approximately 1,000,000 anonymous
ratings of 3,952 movies made by 6,040 users. The ratings are
on a 5-star scale (whole-star ratings only), and each user has
rated atleast 20 movies. For each dataset, we have 5 pairs of
training and test matrices obtained by splitting the data in a
ratio of 4: 1. Each of these pairs have disjoint test sets; this is
to allow 5 fold cross validation.

The Normalized Mean Absolute Error (NMAE) between
ratings and predictions is a widely used metric to evaluate
the statistical accuracy of a recommender system. NMAE
measures the deviation of the predictions from their true user­
specified values. For each pair < Pi, qi > of ratings and
predictions, the metric treats the absolute error IPi -qi I between
them, equally. Formally, it is defined as

NMAE = ��l IPi - qi I
NRmax

where Rmax is the maximum possible rating.

(16)

We report both the obtained speed-ups, as well as the
NMAE, for our proposed approach on the two test sets.

We used MATLAB for the implementation of the algo­
rithms, and ran the experiments on AMD Phenom IT X3
710 2.6 GHz Triple-Core Processors. The proposed algorithm
was parallelized on an NVIDIA GeForce GTX 680 graphics
processor with 1536 CUDA cores and a standard memory of
2048 MB, using CUDA C/C++ APls.

The results for the MovieLens lOOK and the MovieLens
1M datasets have been illustrated in Tables I and II respec­
tively. The proposed algorithm was able to recover the smaller
matrices almost 2.28 times faster, at an average, than it's
sequential counterpart, whereas an average speed-up of nearly
8.51 times was observed for the larger matrices. Moreover, the
observed NMAE values are extremely close for the proposed
parallel and existing sequential versions, which suggests that
the proposed algorithm is able to estimate the ratings matrix
without a deterioration in the reconstruction accuracy. This
validates our expectation. An important observation is that the
speed-ups increase with an increase in the size of the matrix.
This can be attributed to the significant performance benefits
provided by the GPU for computations involving matrix and
vector operations.

These results suggest that the proposed approach is superior
to the existing, sequential algorithm.

V. CONCLUSION

In collaborative filtering, latent semantic analysis factorize
the ratings matrix into a user latent factor matrix and an

item latent factor matrix. Such a matrix factorization problem,
although efficient to solve is not an optimal approach since
it is a bi-linear (and hence non-convex) problem with no
global convergence guarantees. Nevertheless, traditional latent
semantic analysis estimates these two matrices and finally
computes the ratings matrix as a product of these two.

We do not actually need to estimate these user and item
latent factor matrices; our goal is to estimate the final ratings
matrix. The ratings matrix is low-rank; it has the same rank
as the number of latent factors which is much less than the
number of users or items. Thus finding the ratings can be recast
as a low-rank matrix completion problem. All algorithms,
that solve the matrix completion problem are computationally
expensive; that is why they are not popular for practical
collaborative filtering problems. In this work, we have taken a
well known matrix completion algorithm and showed how it
can be implemented on a GPU.

Any matrix completion algorithm consists of four major
steps - solving a partial least squares problem, computing
singular value decomposition (SVD), thresholding the singular
values and recombination of the thresholded singular values
with the left and right singular matrices to update the estimate
of the low-rank matrix. The last two steps are inherently
parallelizable on a GPU. There are also efficient algorithms to
implement SVD on a GPU. We used the CULA library [17]
for the same. For solving the partial least squares problem,
we employed a stochastic technique that can be efficiently
implemented on a GPU.

We have compared our proposed parallelized version with
the sequential algorithm. We find that while there is no
deterioration in recovery accuracy, our method yields signif­
icant improvements in speed, especially when the data size
increases.

REFERENCES

[I] Abernethy, J., Bach. F., Evgeniou, T. and Vert, J. P. "Low-rank matrix
factorization with atlributes". Technical Report N24/06/MM, Ecole des
Mines de Paris, 2006.

[2] ACM SIGKDD and Netftix. Proceedings of KDD Cup and Workshop,
2007.

[3] Amit, Y., Fink, M., Srebro, N. and Ullman, S. "Uncovering shared
structures in multiclass classification". International Conference on
Machine Learning, 2007.

[4] Arbenz, P. and Golub, G. "On the spectral decomposition of Hermitian
matrices modified by row rank perturbations with applications". SIAM
Journal on Matrix Analysis and Applications, 1988.

[5] Argyriou, A., Evgeniou, T. and Ponti!, M. "Multi-task feature learning".
Neural Information Processing Systems, 2007.

[6] Bertsekas, D. P. and Tsitsiklis, J. N. "Gradient convergence in gradient
methods with errors". SIAM Journal on Optimization, Vol. 10 , pp.
627-642, 2000.

[7] Cai, J. F., Candes, E. J. and Shen, Z. "A singular value thresholding
algorithm for matrix completion". SIAM Journal on Optimization,
20(4): 1956-1982,2008.

[8] Candes, E. J., and Recht, B. "Exact matrix completion via convex
optimization". Foundations of Computational Mathematics., 9, (2008)
717-772.

[9] Candes, E. J., and Tao, T. "The power of convex relaxation: Near­
optimal matrix completion". IEEE Transactions on Information Theory,
56 (5), (2009), 2053-2080.

[10] Friedlander, M. P. and Goh, G. "Tail bounds for stochastic approxima­
tion". arXiv:1304.5586, 2013.

186 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

[11] Friedlander, M. P. and Schmidt, M. "Hybrid deterministic-stochastic
methods for data fitting". SIAM JOWl1a1 on Scientific Computing, Vol.
34,2012.

[12] Golub, G. H. "Some modified matrix eigenvalue problems". SIAM
Review, 1973.

[13] GPGPU. "General purpose computation on Graphics Processing Units".
URL http://www.gpgpu.org.

[14] Gu, M. and Eisenstat, S. "A stable algorithm for the rank-I modification
of the symmetric eigenproblem". Report YALEU/DCS/RR-916, Yale
University, 1992.

[15] Gu, M. and Eisenstat, S. "A divide-and-conquer algorithm for the
bidiagonal SV D". Report YALEU/DCS/RR-933, Yale University, 1992.

[16] Harish, P., Vineet, v., and Narayanan, P. J. (2009). "Large graph
algorithms for massively multithreaded architectures". Centre for Vi­
sual Information Technology, I. Institute of Information Technology,
Hyderabad, India, Tech. Rep. lllT/TR12009/74.

[17] Humphrey, J.R., Price, D.K, Spagnoli, KE., Paolini, A.L., Kelmelis,
E.J. "CULA: hybrid gpu accelerated linear algebra routines". Proceed­
ings of SPIE. p. 7705, 2010

[18] Ji, S. and Ye, J. "An accelerated gradient method for trace norm
minimization". International Conference on Machine Learning, 2009.

[19] Khronos OpenCL Working Group. "The OpenCL Specification". Ver­
sion 1.0.29, 8 December 2008.

[20] Lahabar, S. and Narayanan, P. J. "Singular Value Decomposition on
GPU using CUDA". IPDPS, 2009.

[21] Liu, Z. and Vandenberghe, L. "Interior-point method for nuclear norm
approximation with application to system identification". SIAM Journal
on Matrix Analysis and Applications, 31(3):1235-1256, 2009.

[22] Ma, S., Goldfarb, D. and Chen, L. "Fixed point and Bregman iterative
methods for matrix rank minimization". Mathematical Programming,
pages 1-33, 2009.

[23] Majumdar, A. and Ward, R. K. "Synthesis and Analysis Prior Algo­
rithms for Joint-Sparse Recovery". IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 3421-3424, 2012.

[24] Majumdar, A. and Ward, R. K "On the Choice of Compressed Sensing
Priors: An Experimental Study". Signal Processing: Image Communi­
cation, Vol. 27 (9), pp. 1035-1048, 2012.

[25] Mazumder, R., Hastie, T., and Tibshirani, R. "Spectral Regularization
Algorithms for Learning Large Incomplete Matrices". Journal of Ma­
chine Learning Research, 99:2287-2322, 2010

[26] NVIDIA. "NVIDIA CUDA Programming Guide". NVlDIA Corpora­
tion,2013.

[27] Recht, B. and Re, C. "Parallel Stochastic Gradient Algorithms for
Large-Scale Matrix Completion". Optimization Online, 2011.

[28] Selesnick, I. W. and Figueiredo, M. A. T. "Signal restoration with
overcomplete wavelet transforms: comparison of analysis and synthesis
priors". Proceedings of SPIE, Vol. 7446 (Wavelets Xlll), 2009.

[29] Shah, A. and Majumdar, A. "Parallelizing Sparse Recovery Algorithms:
A Stochastic Approach". International Conference on Digital Signal
Processing, 2014.

[30] Toh, K. C. and Yun, S. "An accelerated proximal gradient algorithm
for nuclear norm regularized least squares problems". Pacific Journal
of Mathematics, 6:615-640, 2010.

[31] Tomasi, C. and Kanade, T. "Shape and motion from image streams
under orthography: a factorization method". International Journal of
Computer Vision, 9(2):137-154, 1992.

[32] http://grouplens.org/datasets/movielens/

[33] http://cnx.org/content/m32168!latest/

2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 187

