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Abstract-Latent factor models formulate collaborative filter­
ing as a matrix factorization problem. However, matrix factoriza­
tion is a bi-linear problem with no global convergence guarantees. 
In recent years, research has shown that the same problem can 
be recast as a low-rank matrix completion problem. The resulting 

algorithms, however, are sequential in nature and computationally 
expensive. In this work we modify and parallelize a well known 
matrix completion algorithm so that it can be implemented on 
a GPu. The speed-up is significant and improves as the size of 
the dataset increases; there is no change in accuracy between the 
sequential and our proposed parallel implementation. 

Keywords-Matrix Completion, Recommendation Systems, Col­
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I. INTRODUCTION 

In this work, we revisit the collaborative filtering approach 
to recommender systems that has, in recent years, enjoyed 
the attention of the research community. The problem of 
recovering a (approximately) low-rank matrix from its under­
sampled projections is prevalent in many areas of engineering 
and applied science, including machine learning [1], [3], [5] 
and computer vision [31]. As an example, let us consider the 
Nettlix problem [2], where the users provide ratings for a 
subset of the available items, and the objective is to infer their 
preference for the remaining content. The available ratings 
matrix, in such a scenario, is very sparse since the users can 
only be expected to rate a few items each. Recovering the 
matrix, given this limited sample of its entries, is extremely 
ill-posed as we may have infinitely many completions. 

The latent factor model assumes that there are f underlying 
factors, contributing to a user's taste or preference, that are 
responsible for the user's rating on an item. The item is 
characterized by a vector v j x 1 which encapsulates the extent 
to which each of the f factors are present in it. The user is 
characterized by a vector U j x 1 which consists of the user's 
affinity towards each of the f factors. Thus, the rating of 
user i on the item j is simply the inner product between the 
corresponding v and u; 

(1) 

We now consider the matrix of ratings from all users on 
all items. Let us assume that there are M users and N items. 
If we stack all the user' affinities (u's) as rows of a matrix 
UMxj and all the items' v's as rows of a matrix VMxj, the 
full ratings matrix is represented as, 

(2) 

When the number of users (M) and number of items (N) 
is much larger than the number of factors (which is typically 
the case in any practical collaborative filtering problem) the 
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matrix X is low-rank (of rank f). Since all the ratings are 
not available, X is only partially full. Thus, in collaborative 
filtering, the problem is to find all the ratings in X knowing 
that it is low-rank. 

Let Sl be the set of indices where the matrix X is observed, 
i.e. where the ratings are available. Then we can define a 
sampling operator A on the set Sl. The observation model for 
collaborative filtering can thus be succinctly represented as, 

Ymxl = A(XMxN), A: m.MxN --+ m.m (3) 

The problem is to recover X given the observations Y and 
the sampling operator A. 

Since the matrix X is known to be low-rank, the straight­
forward approach to solve the above is to minimize X's rank 
subject to data constraints. 

min rank (X) subject to Y = A(X) 
x 

(4) 

Unfortunately solving the above formulation exactly is 
an NP-hard problem with doubly exponential complexity. 
Theoretical studies [8], [9] argue that it is possible to recover 
the correct solution (a low rank matrix) by replacing the NP­
hard objective function (rank of a matrix) in (4) by its closest 
convex envelope - the nuclear norm: 

�n IIXII. subject to y = A(X); IIXII. = L 100ii (5) 

where O';'s are the singular values of X and there are r(<< 
M, N) such singular values. 

This paper contributes to the line of work concerned with 
developing algorithmic frameworks to solve (5) for large-scale 
problems. The amount of available information has increased 
faster than our ability to process it. It is no longer feasible 
to rely on improvements in processors to speed-up matrix 
estimation algorithms, and as a result, we have moved towards 
a model where we have more processors that can work in paral­
lel. In this paper, we modify a well-known matrix completion 
algorithm using the principles of parallel stochastic gradient 
descent, and then accelerate it by harnessing the 'processing 
parallelism' of modern Graphics Processing Units (GPUs). 

The rest of the paper is organized into several sections. 
The existing literature is briefly reviewed in the following 
section. The proposed methodology is discussed in section 3. 
We examine the experimental results in section 4. Finally, we 
discuss the conclusions of this work in section 5. 
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II. RELATED WORK 

There have been a handful of attempts in the past [7], 
[18], [21], [22], [30], [25] to address the matrix completion 
problem, but these techniques are computationally intensive 
and prove to be impractical as the size of the data approaches 
the scale commonly used in practice (such as by internet 
retailers). A few methods, such as [27], try to factorize the 
ratings matrix into a user latent factor matrix and an item latent 
factor matrix. These methods rely on an inherent low-rank 
parameterization, which leads to a bi-linear (and hence non­
convex) formulation of the optimization problem. While such 
problems are computationally more efficient to solve, they lack 
global convergence guarantees and the solutions, in general, 
may be highly sensitive to initialization. 

One way to scale-up these algorithms to larger datasets, 
is by leveraging the computational horse-power provided by 
Graphics Processing Units. Modern GPUs have gained popu­
larity as low-cost platforms for massively parallel computation. 
The availability of high-level programming languages such as 
CUDA [26] and OpenCL [19] has lowered the programming 
barrier for the GPU. As a result, GPUs are now seen as high 
performance multi-core processors and have found extensive 
use in general-purpose computation [13]. In this work, we 
modify the well-known iterative thresholding algorithm, and 
present a method to parallelize and implement the algorithm 
on a GPU. 

III. PROPOSED ALGORITHM 

In this section, we develop the algorithmic framework to 
solve the matrix completion problem for large matrices. 

The optimization problem (5) can be approximated as the 
following relaxed problem: 

min IIXII. subject to Ily - A(X)II} < E 
x 

(6) 

where II * II} denotes the Frobenius norm of a matrix, and E 
is the tolerable limit of error in reconstruction. We initially 
consider the unconstrained lagrangian version of the problem, 
which is easier to solve: 

min Ily - A(X)II} + ,\IIXII. x 
(7) 

A more convenient representation is: 

min Ily - Axil} + ,\IIXII. (8) x 
where XMNxl is the vectorized form of matrix XMxN, A : 
lRMxN 

-+ lRm is a restriction operator, and Ym is the vector 
of measurements. 

A. Optimization Transfer 

The required optimization problem (8) can be solved by 
minimizing the following at each iteration: 

where 

2 ,\ Gk(x) = Ilx - xkl 12 + -IIXII. 0; 

1 T Xk = Xk-l + -A (y - A Xk-d 
0; 

(9) 
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Fig. l. Parallelizalion strategy for the landweber iteration 

In the above formulation, Xk is defined in each land weber 
iteration based on the value of x from the previous iteration; 
0; is the step size and usually is set at max eigenvalue (A T A). 

The equivalence of (8) and (9) is not trivial, and the deriva­
tion is based on the majorization-minimization approach [28], 
[33]. We have refrained from presenting the derivation here 
due to the limited availability of space within this conference 
paper. The interested reader is encouraged to go through the 
relevant references. 

Given the definition of the Frobenius norm, and the 
property that both x and Xk have the same left and right 
singular vector, minimizing the above equation is the same 
as minimizing the following: 

(lO) 

where s and Sk are the singular values of the matrices 
corresponding to x and Xk respectively. This can now be 
decoupled, and minimized using term-wise differentiation, by 
the following (soft-thresholding): 

S = signum(sk) max(O, ISkl- �) 
20; 

(11) 

This is a modified form of the iterative soft-thresholding algo­
rithm used in compressive sensing for h norm minimization. 

B. The Shrinkage Algorithm 

We find that the algorithm consists of the following four 
major steps: 

1) Landweber iteration (to solve the partial least squares 
problem) 

2) Computing the singular value decomposition (SVD) 
3) Soft-thresholding the singular values 
4) Recombination of the thresholded singular values with the 

left and right singular matrices 

We initially focus on parallelizing the land weber iteration, 
which is inherently sequential in nature. To do so, we make use 
of a gradient descent optimization method based on stochastic 
optimization, known as the stochastic gradient descent. A 
similar approach was used in [29] as well, for parallelizing 
sparse recovery algorithms. 

The landweber iteration is given by: 

1 21 Xk = Xk-l + - llxllY - AxI 12 _ 20; X-Xk-l 
(12) 

2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 183 



Such an iteration can be represented as the 
gradient descent step: 

following 

1 2 1 Xk = Xk-l + - �xlly - AxI 12 _ 2a X-Xk-J (13) 

In stochastic gradient descent [6], [11], [10] the gradient 
of a function is approximated by its stochastic version. This 
means that in each iteration of the algorithm, the gradient is 
computed on a small batch of samples instead of the entire 
data. An extreme case is when the gradient is computed on a 
single sample. The relation between the gradient on the entire 
data, given by 9, and the stochastic gradient, given by 98' can 
be expressed as follows: 

9 = 98 + e (14) 

The error between the two gradients is represented as a random 
variable e. In accordance to the theory of stochastic gradient 
descent, as shown in [6], [11], [10], we have: 

E(e) = 0 (15) 

where E( e) denotes the expected value of the random variable 
e. It has been further shown that the stochastic gradient 
converges to the gradient computed on the entire data as 
determined by the second order moment. 

The principles of stochastic gradient descent can be applied 
to the landweber iteration. Therefore, we can run stochastic 
land weber iterations in parallel, on parts of the data, instead 
of calculating the land weber update on the entire data. We 
can then closely approximate the full land weber update by 
aggregating the individual stochastic land weber updates (as the 
error is expected to asymptotically reach zero). 

We propose the use of the following two-step process in 
place of the original iteration: 

1) Compute stochastic landweber updates, in parallel, on 
small samples of the data. 

2) Aggregate the stochastic land weber updates to estimate 
the land weber update on the entire data. 

Each stochastic landweber update can computed indepen­
dently in a separate core. The proposed stochastic version of 
the iteration is illustrated in Algorithm 1. 

Algorithm 1 Parallel Stochastic Landweber Iteration 

I: N +- number of processing units available 
2: m +- total number of samples (each row of y is considered 

a sample) 
3: 'Y +- sampling factor (-h ::; 'Y ::; 1) 
4: for all i E {l, . .  N}, in parallel do 
5: Xki) +- xk-l + l�A(i)T(y(i) - A(i)Xk_l), where y(i) 

denotes the random1y chosen subset of the rows in y and 
A (i) denotes the corresponding rows in A 

6: end for 
7: Aggregate from all the units, Xk +- -h L:[:l Xki) 
8: return xk 

The next steps consist of a singular value decomposition 
followed by the soft-thresholding of the singular values of 
X. Soft-thresholding is an element-wise operation and is 
embarrassingly parallel. The computational bottleneck here is 

the singular value decomposition. The mathematical structure 
of the SVD makes it a suitable candidate for parallelization 
on GPUs, and a variety of approaches have been explored in 
literature [4], [12], [14], [15], [20]. 

In our implementation, we make use of the commercial 
GPU linear algebra library, CULA [17], for SVD computation. 
The CULA library was chosen as it provides stable and reliable 
GPU algorithms. In addition, it enables greater control on the 
transfer of data to and from the GPU, by exposing a device 
interface to operate directly on matrices residing within the 
GPU memory. 

The proposed Shrinkage Algorithm, for the unconstrained 
optimization problem (8), is given in Algorithm 2. 

Algorithm 2 Proposed Shrinkage Algorithm 

I: Initialize XQ, and set k +- 0 
2: while k < kmax do 
3: k +- k + 1 
4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

Compute the objective function, Jk-1: 
Jk-1 +- Ily - AXk-1II� + AIIXk-1 1 1* 
xk +- parallel stochastic land weber iteration 
Reshape Xk to form the matrix Xk 
GPU Accelerated SVD: Xk = U�VT 

Soft-threshold: t +- soft(diag(�), 2).. ) 
A Q 

Reconstruct Xk: Xk +- U�VT 

Form Xk by vectorizing Xk 
Compute the objective function, Jk: 
Jk +- Ily - AXkll� + AIIXkll* 
if (Jk-1 - Jk)/(Jk-1 + Jk) < Tol then 

break 
end if 

15: end while 
16: return Xk 

C. Constrained Optimization via Cooling 

We have, so far, discussed a solution for the unconstrained 
optimization problem (7). Our objective remains, however, to 
solve the constrained problem (6). 

The parameters A and E are related, but for most problems, 
this relation is not analytic and is difficult to find without loss 
of generalization; it is not possible to obtain the parameter 
A if E is available. To address this issue, a cooling strategy 
is usually employed [23], [24]. We start with a high value 
of A and solve the quadratic programming problem (QP) for 
the given value. In the next iteration we decrease the value 
of A and solve the QP once more. The complete constrained 
optimization algorithm, along with the cooling technique, is 
illustrated in Algorithm 3. 

The above mentioned algorithm makes use of the following 
two loops: The first loop is present within the shrinkage 
algorithm and minimizes (8) for a given value of A. This loop 
terminates when the relative change in the objective function, 
(Jk-l - Jk)/(Jk-l + Jk), is less than the allowed tolerance, 
or after running for a fixed number of iterations. The second is 
the outer loop that decreases the value of A and exits when the 
error in reconstruction falls below the tolerable limit of error, 

Ily - AxI 12 ::; E, or if A attains its minimum value. 
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Algorithm 3 Con trained Optimization via Cooling 

1: Initialize x +- 0, A < max( AT y) 
2: Choose DecFac, the decrease factor for cooling A 
3: Transfer the sampled entries y, the initial x and other 

required parameters to the GPU 
4: while Ily - Axl 12 > E do 
5: Obtain X by using the proposed shrinkage algorithm 

for the current value of A 
6: A +- A * DecFac 
7: if A < Amin then 
8: break 
9: end if 

10: end while 
11: Transfer the recovered matrix X back to the CPU 

TM CUOA Programming Model 

Fig. 2. The CUDA hardware model and programming model [16] 

D. CUDA Implementation 

We briefly discuss the CUDA programming and hardware 
models, and then describe the implementation of our proposed 
approach. 

The CUDA Architecture: In the CUDA programming 
model, a software CUDA block is mapped to a hardware 
CUDA multiprocessor, as shown in Figure 2. When multiple 
blocks are assigned to a multiprocessor, the CUDA program­
ming environment determines how the blocks are shared within 
the multiprocessor. Each multiprocessor consists of a series of 
processing units along with a small shared memory. 

CUDA is based on the Single Instruction Multiple Data 
(SIMD) model, which means that the same instruction is 
executed by the processor on different data at a time. The 
CUDA platform is accessible to developers through CUDA 
C/C++ APIs. The CUDA device acts as a multi-core processor, 
where threads run in parallel in batches of warp size. 

If a group of blocks is assigned to a single multiprocessor, 
the available shared memory and registers are split equally 
amongst the blocks. A block consists of a group of threads, 
that run in parallel when the block is executed. Each thread 
executes a single instruction set called the kernel. Each block 
is assigned an ID, and each thread is assigned a unique ID 
within the block. These IDs can be accessed from within the 
kernel function, and are used together to operate on a part of 
the data. 

The interested reader is encouraged to refer to [26] for 
more details about CUDA programming. 

TABLE J. MOVIELENS lOOK: 1682 x 943 

Matrix 
Proposed Sequential 

Speedup 
Time(s) NMAE Time(s) NMAE 

MI 719.94 0.70138 1632.6 0.70142 2.2676 

M2 722.17 0.70196 1630.2 0.70197 2.2573 

M3 698.65 0.69742 1618.8 0.69743 2.3170 

M4 716.62 0.69863 1633.7 0.69868 2.2797 

M5 705.04 0.69849 1604.0 0.69854 2.2750 

Implementation Details: We make use of the CUDA-based 
CUBLAS library to implement linear algebra routines, and 
the (dense) free version of the commercial GPU-based linear 
algebra toolkit, CULA [17], for the SVD computation. 

The performance of GPU libraries, and BLAS in general, 
is highly dependent on data placement and its movement. The 
bandwidth between the CPU and the GPU is usually much 
lower than the internal bandwidth of the GPU device, and it 
therefore important that data transfers to and from the GPU 
device be minimized. We transfer the input data (the sampled 
entries, the initialized matrix and other parameters) to the GPU 
at the very beginning of the algorithm. The data is then kept 
in the GPU memory and operated upon directly using the 
available device interfaces, to avoid the cost of transferring 
data between the host and the GPU device in each iteration. 
Upon convergence of the algorithm, the recovered matrix is 
transferred back to the host. The input matrix XMxN is stored 
on the GPU as a 1-D array of size M x N, in a column-major 
format. This eliminates the need to reshape the vector Xk to 
matrix Xk (as in step 6 of the shrinkage algorithm) and to 
vectorize the matrix Xk (as in step 10) in each iteration. 

The parallel stochastic land weber iteration is implemented 

using a custom kernel. Each element of x�i) is updated by a 
single thread. The aggregated Xk is then obtained by a custom 
aggregation kernel. 

Following the SVD computation using the CULA library, 
a 1-D vector of singular values, I;, is obtained. Since soft­
thresholding is an element-wise operation, it is aptly suited to 
the massively multi-threaded CUDA SIMD architecture. The 
soft-threshold operation on the singular values is implemented 
using a custom kernel, where each singular value is acted upon 
by a single thread. 

The subsequent reconstruction of the matrix Xk com­
prises of two linear algebra routines, implemented using the 
CUBLAS library. The first routine scales the columns of the 
matrix U with the corresponding, thresholded singular values. 
The second routine multiplies the scaled matrix (j with VT. 
These routines accelerate the reconstruction by leveraging the 
speed-ups in matrix-vector products offered by the GPU. 

IV. EXPERIMENTAL EVALUATION 

To evaluate the performance of the proposed algorithm, we 
used the freely available MovieLens datasets [32]. The Movie­
Lens datasets consist of user-provided ratings for movies, and 
were collected by the GroupLens Research Project at the 
University of Minnesota. 

For our experiments, we used the MovieLens lOOK and the 
MovieLens 1M datasets. The smaller dataset (lOOK) consists 
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TABLE II. MOVIELENS 1M: 6040 x 3952 

Matrix 
Proposed Sequential 

Speedup 
Time(s) NMAE Time(s) NMAE 

MI 11391 0.70914 99287 0.70919 8.7162 

M2 11218 0.70901 97878 0.70906 8.7250 

M3 11201 0.70877 96326 0.70882 8.5997 

M4 11460 0.70925 92997 0.70935 8.1149 

M5 11272 0.70909 94673 0.70916 8.3989 

of 100,000 ratings from 943 users on 1682 movies, while 
the latter (1M) contains approximately 1,000,000 anonymous 
ratings of 3,952 movies made by 6,040 users. The ratings are 
on a 5-star scale (whole-star ratings only), and each user has 
rated atleast 20 movies. For each dataset, we have 5 pairs of 
training and test matrices obtained by splitting the data in a 
ratio of 4: 1. Each of these pairs have disjoint test sets; this is 
to allow 5 fold cross validation. 

The Normalized Mean Absolute Error (NMAE) between 
ratings and predictions is a widely used metric to evaluate 
the statistical accuracy of a recommender system. NMAE 
measures the deviation of the predictions from their true user­
specified values. For each pair < Pi, qi > of ratings and 
predictions, the metric treats the absolute error IPi -qi I between 
them, equally. Formally, it is defined as 

NMAE = ��l IPi - qi I 
NRmax 

where Rmax is the maximum possible rating. 

(16) 

We report both the obtained speed-ups, as well as the 
NMAE, for our proposed approach on the two test sets. 

We used MATLAB for the implementation of the algo­
rithms, and ran the experiments on AMD Phenom IT X3 
710 2.6 GHz Triple-Core Processors. The proposed algorithm 
was parallelized on an NVIDIA GeForce GTX 680 graphics 
processor with 1536 CUDA cores and a standard memory of 
2048 MB, using CUDA C/C++ APls. 

The results for the MovieLens lOOK and the MovieLens 
1M datasets have been illustrated in Tables I and II respec­
tively. The proposed algorithm was able to recover the smaller 
matrices almost 2.28 times faster, at an average, than it's 
sequential counterpart, whereas an average speed-up of nearly 
8.51 times was observed for the larger matrices. Moreover, the 
observed NMAE values are extremely close for the proposed 
parallel and existing sequential versions, which suggests that 
the proposed algorithm is able to estimate the ratings matrix 
without a deterioration in the reconstruction accuracy. This 
validates our expectation. An important observation is that the 
speed-ups increase with an increase in the size of the matrix. 
This can be attributed to the significant performance benefits 
provided by the GPU for computations involving matrix and 
vector operations. 

These results suggest that the proposed approach is superior 
to the existing, sequential algorithm. 

V. CONCLUSION 

In collaborative filtering, latent semantic analysis factorize 
the ratings matrix into a user latent factor matrix and an 

item latent factor matrix. Such a matrix factorization problem, 
although efficient to solve is not an optimal approach since 
it is a bi-linear (and hence non-convex) problem with no 
global convergence guarantees. Nevertheless, traditional latent 
semantic analysis estimates these two matrices and finally 
computes the ratings matrix as a product of these two. 

We do not actually need to estimate these user and item 
latent factor matrices; our goal is to estimate the final ratings 
matrix. The ratings matrix is low-rank; it has the same rank 
as the number of latent factors which is much less than the 
number of users or items. Thus finding the ratings can be recast 
as a low-rank matrix completion problem. All algorithms, 
that solve the matrix completion problem are computationally 
expensive; that is why they are not popular for practical 
collaborative filtering problems. In this work, we have taken a 
well known matrix completion algorithm and showed how it 
can be implemented on a GPU. 

Any matrix completion algorithm consists of four major 
steps - solving a partial least squares problem, computing 
singular value decomposition (SVD), thresholding the singular 
values and recombination of the thresholded singular values 
with the left and right singular matrices to update the estimate 
of the low-rank matrix. The last two steps are inherently 
parallelizable on a GPU. There are also efficient algorithms to 
implement SVD on a GPU. We used the CULA library [17] 
for the same. For solving the partial least squares problem, 
we employed a stochastic technique that can be efficiently 
implemented on a GPU. 

We have compared our proposed parallelized version with 
the sequential algorithm. We find that while there is no 
deterioration in recovery accuracy, our method yields signif­
icant improvements in speed, especially when the data size 
increases. 
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