
Parallelizing Sparse Recovery Algorithms:
A Stochastic Approach

Achal Shah∗ and Angshul Majumdar†
∗Indian Institute of Technology, Guwahati

†Indraprastha Institute of Information Technology, Delhi

Abstract—This work proposes a novel technique for acceler-
ating sparse recovery algorithms on multi-core shared memory
architectures. All prior works attempt to speed-up algorithms
by leveraging the speed-ups in matrix-vector products offered
by the GPU. A major limitation of these studies is that in most
signal processing applications, the operators are not available
as explicit matrices but as implicit fast operators. In such a
practical scenario, the prior techniques fail to speed up the
sparse recovery algorithms. Our work is based on the principles
of stochastic gradient descent. The main sequential bottleneck
of sparse recovery methods is a gradient descent step. Instead
of computing the full gradient, we compute multiple stochastic
gradients in parallel cores; the full gradient is estimated by
averaging these stochastic gradients. The other step of sparse
recovery algorithms is a shrinkage operation which is inherently
parallel. Our proposed method has been compared with existing
sequential algorithms. We find that our method is as accurate as
the sequential version but is significantly faster - the larger the
size of the problem, the faster is our method.

Keywords—Sparse Signal Recovery, Parallel Stochastic Gradi-
ent Descent, Compressive Sensing

I. INTRODUCTION

In this work, we are interested in solving a system of
linear equations where the solution is known to be sparse.
Such problems arise in machine learning (regression) and
in a wide class of signal processing problems (compressive
sensing). There are two classes of algorithms to solve these
problems - greedy approximate algorithms and optimization
based techniques. Both of these approaches are inherently
sequential in nature. In this work, the objective is to parallelize
the optimization based techniques.

There have been a handful of attempts in the past [1], [2],
[3], but all of them suffer from shortcomings (to be discussed
later). However, accelerating the sparse recovery algorithms for
general purpose problems is an imminent necessity for large
scale problems such as medical imaging and seismic inversion
problems. One cannot rely on improvements in processors to
speed-up the sparse recovery algorithms. It is well known that
the processors are not getting much faster; instead we have
more processors that can work in parallel. One needs to harness
this available ‘processing parallelism’ in order to accelerate the
sparse recovery algorithms.

It should be kept in mind that we are not trying to run
a sparse recovery algorithm in a distributed environment; i.e.
with separate processor and separate memory. Rather we work
in ‘parallel processing shared memory’ architecture. This is
more realistic. For most machine learning or signal processing
applications, we will have the latest PC with multiple processor

cores and Graphical Processing Units (GPU) at our disposal,
but will not have a cluster!

Specifically, we look at three sparse recovery problems.
The first one is a simple sparse solution to a linear system of
equations. The second one is a group-sparse solution to the
same problem and the third one is a joint-sparse solution to
the multiple measurement vector (MMV) recovery problem.
The problems and their existing solutions will be discussed in
detail in the next section.

Optimization based approaches to all the three problems
consist of two main portions. In the first part, the gradient
of the cost function is computed and the second step is a
thresholding operation. Computing the gradient is a linear
operation, but is not separable and hence is not naturally
parallelizable. Thresholding, although a non-linear operation,
is separable and hence computing it in parallel is trivial. In
essence, the bottleneck is to parallelize the gradient computa-
tion. In this work, instead of attempting to directly compute the
full gradient we compute stochastic gradients in multiple cores.
Theory of stochastic gradient descent says that the expected
stochastic gradient is same as the full gradient. Following
this theory, we (empirically) compute (average) the expected
stochastic gradient to estimate the actual gradient. Since, the
stochastic gradients are computed using a small part of the
data, and in parallel (on multiple cores of CPUs or GPUs), the
gradient computation is vastly accelerated.

The rest of the paper is organized into several sections. The
sparse, group-sparse and joint-sparse MMV recovery problems
and their existing solutions are reviewed in the following
section. The proposed methodology is discussed in section 3.
We examine the experimental results in section 4. Finally the
conclusions of this work are and future directions are discussed
in section 5.

II. LITERATURE REVIEW

A. Sparse Recovery Problems

The main issue we want to address in this work is the
solution to the following linear inverse problem:

y = Ax+ η, η ∼ N(0, σ2) (1)

where x is the solution we are seeking and η is the noise
assumed to be Normally distributed.

Such a situation arises in machine learning as a regression
problem. A direct solution via least squares is generally not a
good idea since the system of equations is not well behaved
always. Tikhonov regularization can be used to stabilize the

solution, however such a solution lacks interpretability. In
regression, the columns of A are the explanatory variables,
y consists of the observations and x signifies the importance
of the explanatory variables in explaining the observations.
Tikhonov regularization yields a dense solution; i.e. x has
non-zero values everywhere. In such a scenario, it is not
possible to analyze the significant contributors (variables) to
the observations. Ideally, one would like a sparse solution; i.e.
x should have non-zero values only at a few locations - such
a solution will explain the observations by very few variables.
The Least Angle Selection and Shrinkage Operator (LASSO)
[5] was proposed to achieve this goal.

LASSO : min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ τ (2)

Here the constraint on the l1-norm of the solution promotes
sparsity in the solution.

Today, the problem of sparse recovery is more popular in
signal processing; Compressed Sensing (CS) [6], [7] studies
the problem of solving an under-determined system of linear
equations when the solution is known to be sparse. In signal
processing, the recovery is posed in a slightly different manner
as a Basis Pursuit Denoising (BPDN):

BPDN : min
x
‖x‖1 subject to ‖y −Ax‖22 ≤ ε (3)

For most signal processing problems, the noise variance (σ) is
known and hence it is sensible to solve (3).

However solving the constrained problems (BPDN and
LASSO) is difficult. In most practical situations, their uncon-
strained version is solved instead; this turns out to be a standard
quadratic programming problem:

QP : min
x
‖y −Ax‖22 + λ‖x‖1 (4)

The three problems LASSO, BPDN and QP are equivalent
for proper choices of τ , ε and λ.

The sparse recovery problem does not assume any structure
to the solution. In group-sparse recovery [8], it is assumed that
the indices in x are grouped, i.e. all the coefficients in a group
are either non-zeroes or all are zeroes. Therefore, given the
grouped indices, the problem in group-sparse recovery is to
solve (1) where the solution will consist of only a few non-
zero groups. The recovery is posed as follows:

min
x
‖y −Ax‖22 + λ‖x‖2,1 (5)

where l2,1-norm is defined as the sum of l2-norms of the
groups. The l2-norm over the groups in x enforces a dense
solution within the selected group; but the sum over the l2-
norms act as an l1-norm on the groups and enforces selection
of only a few groups.

So far we were talking on a single measurement vector
(SMV) problem (1). An extension to the SMV is the multiple
measurement vector (MMV) problem:

Y = AX +N (6)

where for C vectors, Y = [y1| . . . |yC], X = [x1| . . . |xC] and
N = [η1| . . . |ηC].

Joint-sparse recovery [9] is a special case, where the xi’s
have a common sparse support; i.e. the non-zero values in the

different xi’s occur at the same position; thus X turns out to be
row-sparse. The recovery is achieved by solving the following
optimization problem:

min
X
‖Y −AX‖22 + λ‖X‖2,1 (7)

where ‖X‖2,1 is defined as the sum of the l2-norms over the
rows of X . The idea behind the mixed norm ‖X‖2,1 is the
same as before. The l2-norm of the rows enforces non-zero
values along all the elements of the selected rows, but the
sum over the l2-norms of the rows promotes sparsity in the
selection of rows.

B. Recovery Algorithms

It is not possible to derive the algorithms in the limited
scope of this conference paper. We will discuss the algorithms
in this section; for the derivations, the interested reader should
peruse the relevant references.

In this work, we focus on the Iterative Soft Thresholding
algorithms for sparse recovery. We observe that all the recovery
algorithms (4), (5) and (7) can be expressed in the following
generic form:

min
x
‖y −Ax‖22 + λR(x) (8)

Even (7) can be expressed in this form by rearranging A as a
block diagonal matrix and concatenating the columns of X . In
(8), the regularization R(x) accounts for the different sparsity
priors.

The first step is to express (8) in the following form, by
incorporating the Landweber iterations.

min
x
‖b−Ax‖22 +

λ

α
R(x) (9)

where
b = xk−1 +

1

α
AT (y −Axk−1)

Where b is defined in each Landweber iteration based on the
value of x from the previous iteration; α is the step size and
usually is set at max eigenvalue (ATA).

The equivalence of (8) and (9) is not trivial; the derivation
is based on the majorization-minimization approach [10], [11].
The next step is to solve (9). This is done by taking the
gradient and evaluating it to zero. The advantage of using
the Landweber iteration becomes apparent here - the problem
becomes separable! For example, take the concrete example
of sparse recovery:

min
x
‖b−Ax‖22 +

λ

α
‖x‖1 (10)

Taking the gradient and equating it to zero, ∆x‖b − Ax‖22 +
λ
α‖x‖1, is the same as follows,

∂

∂x(i)
{(b(i)− x(i))2 +

λ

α
|x(i)|} = 0

⇒ x(i)− b(i) +
λ

2α
signum(x(i)) = 0

⇒ x(i) = signum(b(i)).max(0, |b(i)| − λ

2α
)

For the last step one should read [11]; this is called soft
thresholding or shrinkage. When applied on the full vector
x, this is expressed as,

x = signum(b).max(0, |b| − λ

2α
) = SoftTh(b,

λ

2α
) (11)

Thus the complete algorithm for solving the sparse recov-
ery problem is as follows:

1) Initialize x = 0
2) At every iteration k:

(i) Gradient update: b = xk−1 + 1
αA

T (y −Axk−1)
(ii) Soft-Threshold: xk = SoftTh(b, λ2α)

The group-sparse recovery is almost similar. The Landwe-
ber iteration remains the same. But since the regularization is
different, the soft thresholding parameter is slightly modified.
After Landweber iterations, the objective in each iteration is:

∂

∂x(i)
{(b(i)− x(i))2 +

λ

α
‖xg‖2} = 0

⇒ x(i)− b(i) +
λ

2α
‖xg‖−12 .|x(i)|signum(x(i)) = 0

⇒ x(i) = signum(b(i)).max(0, |b(i)| − λ

2α
‖xg‖−12 .|x(i)|)

Here xg denotes the group, x(i) belongs to. Thus, group-
sparse recovery is similar to sparse recovery; with the only
difference that the threshold is modified. In sparse recovery
the threshold was the same, but in group-sparse recovery it is
dependent on the value of x from the previous iteration.

For joint-sparse MMV recovery the Landweber iteration is
modified; the operations are on matrices.

B = Xk−1 +
1

α
AT (Y −AXk−1)

Equating the derivative and setting it to zero one gets:

X −B +
λ

α
diag(‖Xj→‖−12)|X|signum(X) = 0

where j denotes the jth row. The update for X is:

X = signum(B).max(0, |B| − λ

2α
diag(‖Xj→‖−12).|X|)

This too is a modified soft-thresholding algorithm [12] where
the threshold depends on the previous iterates.

1) Cooling: At the onset we mentioned that the BPDN and
the QP are exactly the same for proper choices of parameters.
Unfortunately, for most problems the relationship between λ
and ε is not analytic; thus it is not possible to obtain the QP
parameter λ if ε is available.

In order to address this issue, generally a cooling strategy is
employed [12], [13]. We start with a high value of λ and solve
the QP for the given value. In the next iteration we decrease
(cool) the value of λ and solve the QP once more. This
continues till the algorithm converges, i.e. till ‖y−Ax‖22 ≤ ε.

C. Previous Studies

It is obvious that, all the algorithms are sequential in nature.
Parallelizing them for multi-core architectures is not trivial.
In [1], the iterative soft thresholding algorithm is computed
on a GPU. Their parallelism is trivial. They use the GPUs
to compute the matrix vector computations in the Landweber
iteration; this speeds up the algorithm. This algorithm was used
for Synthetic Aperture Radar (SAR) reconstruction problems.
A similar approach was used in [3] as well. However, their
application domain was different; sparse recovery was used
for medical image reconstruction.

In [2] a parallel algorithm is derived for solving the sparse
recovery problem (1); but they impose strong constraints on A.
The said algorithm can only solve the sparse recovery problem
if A is orthogonal! This is a very restrictive assumption and
highly impractical. If the system is orthogonal, one would
not employ a complicated iterative sparse recovery algorithm
for recovery. One would simply apply the transpose of the
orthogonal transform in order to get the desired solution!
Besides, the observation model (1) is never on an orthogonal
basis, either in signal processing or in regression problems of
machine learning.

In [2] algorithms for speeding up greedy approximate
algorithms for sparse recovery are proposed. Such algorithms
are not of interest to this paper, but we discuss it nevertheless.
Greedy algorithms also have two main stages - i) projection
(matrix vector multiplication) and ii) support detection (of
non-zero coefficients). The projection operation is simply
accelerated on the GPU by taking advantage of the multiple
cores; thus enhancing the matrix vector multiplication. Support
detection requires sorting; this is an inherently sequential prob-
lem. However since the advent of GPUs there are parallelized
versions of sorting algorithms. In [2], one such algorithm is
used for support detection. The combination of GPU projection
and parallelized support detection, yields high speed ups for
such greedy approximate algorithms.

Sparse Recovery algorithms can also be parallelized when
the matrix / operator A is isotropic, e.g. if it is restricted
Fourier or wavelet kind of operator being applied on two or
higher dimensional data (x). In such a situation, it is possible
to parallelize the matrix vector operations of the Landweber it-
erations to certain extent by exploiting the isotropic properties,
i.e. if one wants to compute a 2D Fourier transform, one can
first apply the 1D Fourier transform along the columns first
(in parallel) and then apply the 1D Fourier transform along
the rows (in parallel). In a personal communication with one
of the authors, Dr. Felix Herrmann of University of British
Columbia’s Seismic Imaging Lab, mentioned such a speed
up technique that was currently being employed in the Lab’s
cluster.

III. PROPOSED ALGORITHM

We find that all three algorithms consist of two main parts.

1) Landweber iteration
2) Soft Thresholding / Shrinkage

The Landweber Iteration is sequential in nature; the soft thresh-
olding is inherently parallel. Thus, parallelizing the Landweber
iteration is the challenge.

To parallelize the Landweber iteration, we leverage con-
cepts in stochastic gradient descent. We repeat the Landweber
iteration for the sake of convenience:

b = xk−1 +
1

α
AT (y −Axk−1)

This is a linear operation that can be expressed as a gradient
descent step:

b = xk−1 +
1

2α
∆x‖y −Ax‖22

∣∣
x=xk−1

(12)

The idea behind stochastic gradient descent [14], [15], [16]
is to approximate the gradient of a function by a stochastic
version; i.e. instead of computing the gradient on the full data,
the gradient is computed on a small sample (in the extreme
case only on one sample). Let g be the actual gradient (on full
data) and let gs be the stochastic gradient, then,

g = gs + e (13)

The error e is a random variable. It is proven in [14], [15], [16]
that the expected error is zero E(e) = 0 and the convergence
of the stochastic gradient to the actual gradient is determined
by the second order moment E(e2).

Since Landweber iteration is a gradient descent method, the
principles of stochastic gradient descent are applicable here.
Therefore instead of computing the Landweber iteration on
the full data, we can compute stochastic Landweber iterations
on small chunks of data in parallel and then get a very
close estimate of the actual Landweber update by computing
the average of all the stochastic Landweber updates since
the expected error asymptotically reaches 0. We replace the
original Landweber update by a simple two step process:

1) Compute stochastic Landweber updates on small chunks
of data by sampling y.

2) Compute the mean from the stochastic Landweber up-
dates to estimate the full Landweber update.

The stochastic Landweber updates are computed in sepa-
rate cores. The stochastic version of the Landweber iterations
is given below:

1) Define N = Number of processing units available, m is
the total number of samples (each row of y is considered
a sample), γ is the sampling factor (1

N ≤ γ ≤ 1)
2) Randomly partition the samples, giving bγmc samples,

along with their corresponding rows in A, to each
processing unit

3) For all i ∈ {1, ..N}, in parallel do,
b(i) = xk−1 + 1

γ
1
αA

(i)T (y(i) −A(i)xk−1),
where y(i) denotes the randomly chosen subset of the
rows in y and A(i) denotes the corresponding rows in
A

4) Aggregate from all the units, xk = 1
N

∑N
i=1 b

(i)

5) Return xk

It can be seen that such a parallelization does not require
explicit access to the rows or columns of the operator A. It
only requires the effect of the sub-sampled rows of A. This
is a stark departure from all prior attempts at using multi-core
GPUs to accelerate sparse recovery algorithms.

Fig. 1. Parallelization strategy for the landweber iteration

The Landweber iteration is common to all three algorithms.
The second step is the Soft-Thresholding operation, defined by,

SoftTh(x, T) = sign(x) max(0, |x| − T) (14)

Although non-linear, it simply consists of element-wise oper-
ations and is therefore, embarrassingly parallel.

The key algorithmic difference to the sparse recovery
algorithm outlined in the previous section, is the replacement
of gradient update and the soft-threshold operation with our
proposed, parallelized alternatives.

A. Discussion

Our approach is fundamentally different from all prior
studies. Previous works, leverage the speed-up in matrix vector
computations on GPUs to accelerate the CS recovery algo-
rithms. We do not rely on this phenomenon; instead of working
on the full data, we divide the full data into small chunks. Each
chunk is handled on separate cores. These chunks of data are
independent from each other and since the chunks are small,
computations on them require very less time and can occur in
parallel. The computations on the small chunks are combined
based on the principles of stochastic gradients.

Such an approach is hardware agnostic. Prior works could
only accelerate by leveraging the fast matrix vector com-
putations in GPUs; it couldn’t exploit the multi-core CPU
architectures. Our approach will work as long as there is a
multi-core shared memory architecture; it does not specifically
require a GPU.

The other limitation of prior studies is that they can only
accelerate when the operator is available as an explicit matrix,
and not when it is available as an implicit fast operator. This is
rare in CS signal processing problems, where the operators are
almost always implicit. In such a scenario, the prior studies fail
to be useful since they have nothing to accelerate (no matrix
vector products)!

IV. EXPERIMENTAL EVALUATION

In this section, we analyze the performance of our approach
for the three sparse recovery problems. The algorithms were
implemented on MATLAB with multi-threading enabled, and
the experiments were run on AMD Phenom II X3 710 2.6
GHz Triple-Core Processors. The proposed algorithm was par-
allelized on an NVIDIA GeForce GTX 680 graphics processor
with 1536 CUDA cores and a standard memory of 2048 MB.

Tables 1, 2 and 3 show the comparative results between the
proposed method based on stochastic gradient descent and the

TABLE I. SPARSE RECOVERY

Size Sparsity
Proposed Sequential

Speedup
Time(s) NMSE Time(s) NMSE

750 × 1250 50 2.4509 1.11E-05 1.9316 1.05E-05 0.788

1500 × 2500 100 4.1659 1.20E-05 8.008 1.15E-05 1.922

3000 × 5000 200 9.484 1.30E-05 32.69 1.23E-05 3.447

4800 × 8000 320 17.223 1.37E-05 80.862 1.30E-05 4.695

TABLE II. GROUP SPARSE RECOVERY

Size Active Groups
Proposed Sequential

Speedup
Time(s) NMSE Time(s) NMSE

750 × 1250 2 9.4599 3.12E-05 8.2993 2.90E-05 0.877

1500 × 2500 4 14.288 2.66E-05 23.43 2.32E-05 1.639

3000 × 5000 8 27.031 3.34E-05 84.568 2.55E-05 3.128

4200 × 7000 10 42.35 3.83E-05 166.47 2.66E-05 3.931

existing sequential algorithms for the general sparse recovery,
group sparse recovery and the joint sparse MMV recovery
respectively. For the group sparse recovery problem, the total
number of groups is fixed at 25. For the joint sparse MMV
recovery, the number of sparse coefficients is fixed at 15, and
the number of measurement vectors at 10, for all experiments.

To make our experiments robust, we generated 10 i.i.d
Gausssian matrices (A) for each experimental configuration.
The experiment was repeated 100 times with different sparse
vectors (x / X) for each of these matrices. We report both
the average reconstruction accuracy (measured in terms of the
Normalized Mean Squared Error) and the average reconstruc-
tion time for matrices of each size.

Tables 1, 2 and 3 conclusively prove that the proposed
approach is superior to the existing, sequential algorithms. The
observed NMSE values are extremely close for the proposed
parallel and existing sequential versions. This validates our
expectation. The speed-ups increase with an increase in the
size of the matrix.

Unfortunately the speed-ups reported here are not the opti-
mal ones. For rapid prototyping we worked on the MATLAB
framework, which is restrictive. MATLAB cannot inherently
parallelize the stochastic Landweber iterations on multiple
cores; some parts of the implementation were sequential in
spite of the best of our efforts. This has reduced the maximum
possible acceleration; our proposed method can potentially
accelerate even more. In a later work, we wish to implement
this using CUDA C/C++ APIs (for GPUs) and OpenMP (for
multicore CPUs) in order to achieve the full potential of our
proposed method

V. CONCLUSION

This is the first work that accelerates general purpose sparse
recovery problems on multi-core shared memory architectures.
Unlike prior works [1], [3], [4], it does not use GPUs to
trivially speed-up the matrix-vector products. Neither does it
rely on special matrix structures (orthogonality [2], isotropic
property) to make the algorithm amenable for such architec-
tures. Moreover our method can be implemented even when
the matrix A is not available as an explicit matrix, but only
available as a fast operator. The prior studies require explicit

TABLE III. JOINT SPARSE MMV RECOVERY

Size
Proposed Sequential

Speedup
Time(s) NMSE Time(s) NMSE

60 × 100 6.1157 2.46E-06 10.6311 2.31E-06 1.7383

60 × 200 6.7446 2.45E-06 12.0142 2.26E-06 1.7813

300 × 500 9.3509 1.04E-06 22.1004 1.03E-06 2.3634

300 × 1000 13.2061 1.09E-06 33.4678 1.06E-06 2.5343

300 × 1500 19.9587 1.33E-06 44.5388 1.28E-06 2.2315

900 × 1500 23.7138 1.03E-06 104.0274 1.02E-06 4.3868

2700 × 4500 103.6111 1.06E-06 682.4023 1.05E-06 6.5862

matrices; they do not work for implicit fast operators on GPUs.
In most signal processing (compressive sensing) problems this
is infeasible. Thus, in such a situation, all previous techniques
would fail and only ours would succeed.

The major departure of our work from prior studies is a
change in philosophy. Accelerating matrix-vector products is
the most obvious function of GPUs, and all prior works rely on
that. However we do not; actually we do not even need GPUs.
Our approach can also accelerate the reconstruction algorithms
on multi-core CPUs. Our philosophy is to divide the full
data into small chunks and operate on them in parallel using
separate cores. The results from the multiple cores are finally
combined. In essence, our algorithm is more geared towards
the divide and conquer regime of distributed processing.

In this work we have worked with moderately sized prob-
lems. Our proposed method can handle larger sized problems,
but the sequential algorithms cannot. As we had to compare
with the sequential version, we could not increase the size
of the problems any further. Also, we did not parallelize too
much (divided the data into 4 chunks only). Even under these
circumstances (moderate size problems and small parallelism)
our method beats the sequential versions in terms of speed
(the accuracy remains the same). The gain in speed increases
as the size of the problem increases.

This is a preliminary work and the future looks optimistic.
This paves the way for further research. Using the same phi-
losophy, we would like to parallelize analysis prior algorithms
[12], [13]. A similar approach can also be used for low-rank
matrix recovery problems on multi-core architectures.

REFERENCES

[1] J. Tian, J. Sun, Y. Zhang, N. Ahmad, B. Zhang, “Parallel Implementa-
tion of Compressive Sensing Based SAR Imaging with GPU”, Journal
of Convergence Information Technology (JCIT), Vol. 6, No. 12, pp. 122
128, 2011.

[2] A. Borghi, J. Darbon, S. Peyronnet, T. F. Chan, S. Osher, “A Simple
Compressive Sensing Algorithm for Parallel Many-Core Architectures”,
Journal of Signal Processing Systems, Vol. 71 (1), pp 1-20, 2013.

[3] A. Shukla, A. Majumdar and R. K. Ward, “Real-Time Dynamic
MRI Reconstruction: Accelerating Compressed Sensing on Graphical
Processor Unit”, IASTED Signal and Image Processing, 2013.

[4] J. D. Blanchard, J. Tanner, “GPU accelerated greedy algorithms for
compressed sensing”, Mathematical Programming Computation, Vol. 5
(3), pp 267-304, 2013.

[5] R. Tibshirani, “Regression shrinkage and selection via the lasso”, J.
Royal. Statist. Soc B., Vol. 58, No. 1, pp. 267-288, 1996.

[6] E. J. Cands, J. Romberg and T. Tao, Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.
(IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, February
2006

[7] D. Donoho, Compressed sensing. (IEEE Trans. on Information Theory,
52(4), pp. 1289 - 1306, April 2006)

[8] J. Huang and T. Zhang, “The benefit of group sparsity”, Ann. Statist.
Volume 38 (4), 1978-2004, 2010.

[9] E. van den Berg, M. P. Friedlander, “Joint-sparse recovery from multiple
measurements”, IEEE Trans. Info. Theory, Vol. 56(5), pp. 2516-2527,
2010.

[10] I. W. Selesnick and M. A. T. Figueiredo, “Signal restoration with
overcomplete wavelet transforms: comparison of analysis and synthesis
priors”, Proceedings of SPIE, Vol. 7446 (Wavelets XIII), 2009.

[11] http://cnx.org/content/m32168/latest/
[12] A. Majumdar and R. K. Ward, “Synthesis and Analysis Prior Algo-

rithms for Joint-Sparse Recovery”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 3421-3424, 2012.

[13] A. Majumdar and R. K. Ward, “On the Choice of Compressed Sensing
Priors: An Experimental Study”, Signal Processing: Image Communi-
cation, Vol. 27 (9), pp. 10351048, 2012.

[14] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient
methods with errors”, SIAM J. Optim., Vol. 10 , pp. 627-642, 2000.

[15] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic
methods for data fitting”, SIAM J. Sci. Comp., Vol. 34, 2012.

[16] M. P. Friedlander and G. Goh, “Tail bounds for stochastic approxima-
tion”, arXiv:1304.5586, 2013.

