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ABSTRACT 

 

In this work we derive algorithms for solving two problems - 

the first one is the combined l1-norm (sparsity) and nuclear 

norm (low rank) regularized least squares problem and the 

second one is the l2,1-norm (joint sparsity) and nuclear norm 

regularized least squares problem. There are no efficient 

general purpose solvers for these problems; our work plugs 

this gap by deriving Split Bregman based algorithms for 

solving the said problems. Both algorithms are applicable 

for recovering hyperspectral images from their compressive 

measurements obtained via the single pixel camera. We 

show that our proposed techniques significantly outperform 

previous methods in terms of recovery accuracy. 

  

Index Terms— Low rank matrix recovery, Sparse 

Recovery, Joint Sparse Recovery, Hyperspectral Imaging 

1. INTRODUCTION 

In the past half a decade there has been enormous interest in 

theory, algorithms and applications of linear inverse 

problems where the solution is sparse, 

1 1 1,  n n N N ny A x n N         (1) 

Here one is interested in solving x, given the measurements 

y and the linear system A; the measurement is assumed to be 

corrupted by white Gaussian noise 2(0, )N  . 

In Compressed Sensing (CS) [1, 2] it is assumed that the 

solution x is sparse. And theoretical studies in this area 

prove that given some constraints on A, it is possible to 

recover the sparse solution by solving the following l1-norm 

minimization problem,  
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The problem of low-rank matrix recovery is closely 

related to CS. Here it is assumed that the solution x is of low 

rank (arranged in a suitable matrix form); i.e. it is assumed 

that a vector formed by the singular values of x is sparse. 

Theoretical studies [3, 4] show that the low-rank solution 

can be recovered by nuclear norm minimization, 
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Sparse recovery and low-rank matrix recovery finds 

applications in a wide variety of topics in electrical 

engineering and computer science. Deriving efficient 

algorithms for solving sparse (2) and low-rank (3) signal 

recovery has matured over the years, but still is considered 

to be an active area of research.  

Recent studies go a step further and model signals as a 

superposition of sparse and low-rank components, i.e.  

( ) ( )X S sparse L low rank       (4) 

Here the problem is to separate these two components; the 

problem is popularly called the Robust Principal Component 

Analysis (RPCA) [5, 6]. The optimization problem to be 

solved is as follows: 
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A more difficult problem is to separate these components 

when the measurement is a lower dimensional projection [7]. 

There are several fast and efficient algorithms to solve the 

RPCA problem - these algorithms are termed 'principal 

component pursuit' [8, 9].  

In this work, we are interested in signal models which 

are not superpositions of sparse and low-rank components; 

we look at signals which are simultaneously sparse AND 

low-rank; i.e. we are interested in solving (1) but we assume 

that x is simultaneously sparse and low-rank. Such a 

problem arises in dynamic Magnetic Resonance Imaging 

(MRI) [10-13]. For recovering a sparse and low-rank 

solution, one usually needs to solve an optimization problem 

of the following form: 
2
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Here the l1-norm promotes a sparse solution whereas the 

nuclear norm encourages a low-rank solution. The user 

assigns the relative importance of the two penalties by fixing 

λ1 and λ2. 

In hyper-spectral imaging (HSI) [14] the problem is 

different. Here the signal is joint-sparse as well as is low-

rank. The optimization problem to be solved is [14-16]: 
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where x=vec(X), 
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row row. 

This is a multiple measurement vector (MMV) recovery 

problem where X has a common sparse support, i.e. X is 

row-sparse; furthermore X is low-rank as well. The mixed 

l2,1-norm for joint/row sparse penalty is well known [14, 15]. 

Even though sparse / joint sparse and low-rank signal 

recovery is applicable to some major problems in scientific 

imaging there are no off-the-shelf efficient algorithms to 

solve them. The papers in dynamic MRI only solve the 

problem (6) approximately. In [10] the algorithm is tailored 

for Total Variation minimization (sparsity penalty); in [11] 

the low-rank penalty is approximated by matrix factorization 

which leads to a highly non-convex formulation with no 

convergence guarantees; in [12, 13] the solution is derived 

based on iterative re-weighted least squares techniques 

which can only promise asymptotic convergence. The papers 

on joint sparse and low-rank recovery [14] are theoretical in 

nature, their recovery algorithm, is not very efficient. 

Given this current scenario, there is a need to derive 

efficient algorithms to solve sparse / joint sparse and low-

rank recovery problems. This is the major contribution of 

this work and will be described in section 2. As a practical 

example, we will apply these techniques to the HSI problem 

in section 3. The experimental results will be examined in 

section 4. The conclusions of the work will be discussed in 

section 5.  

2. SPLIT BREGMAN ALGORITHMS 

We want to solve the sparse and low-rank recovery problem 

(6) and joint sparse and low-rank recovery problem (7). We 

repeat the problems for the sake of convenience. 
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In practical scenarios, the signal is hardly ever sparse in 

itself; most often it is sparse in a transform domain. If the 

transform is orthogonal (e.g. Fourier, Wavelet etc.) it is 

possible to express the recovery as a synthesis prior problem 

such as (6) and (7). But for general purpose (non-

orthogonal) linear operators like Gabor or Total Variation 

penalty, it is not possible to frame a synthesis prior problem. 

In such cases, one needs to formulate them as analysis prior 

problems [17, 18], 
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Here D is the dictionary / linear operator where the 

signal is assumed to be sparse. It is easy to observe that the 

synthesis prior is just a special case of the analysis prior 

formulation where D is identity. Therefore, in this work we 

will derive algorithms to solve the general purpose analysis 

prior formulations (8) and (9). 

We follow the Split Bregman approach to solve the 

optimization problems. This approach has not been used 

before for solving these problems. Owing to limitations in 

space, we do not go into the background of Split Bregman. 

First we derive an algorithm to solve (8). The derivation for 

(9) will be similar and will be done later. 

We solve (8) by Bregman type variable splitting with 

Alternating Directions Method of Multipliers (ADMM) [19]. 

We introduce two proxy variables - p=vec(P) and q=vec(Q) 

for the two penalty functions respectively. We add terms 

relaxing the equality constraints of each quantity and its 

proxy, and in order to enforce equality at convergence, we 

introduce Bregman relaxation variables B1 and B2. The new 

objective function is: 
2
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This allows the problem (10) to be split into an 

alternating minimization of the following (easier) 

subproblems: 
2 2 2

1 1 2 22
min

F FX
y Ax P X B Q X B         (11) 

2

1 1 11
min +

FP
Dp P X B       (12) 

2

2 2 2*
min

FQ
Q Q X B       (13) 

The subproblem (11) is easy to solve; it is just a least 

squares problem that can be solved efficiently using any 

conjugate gradient algorithm. The subproblem (12) is an 

analysis prior denoising problem. The technique to solve this 

is borrowed from [20]: 
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eigenvalue of D
T
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The subproblem (13) is a nuclear norm minimization. 

The algorithm to solve this was derived in [21]. The method 

is called singular value shrinkage. 

2
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Soft-thresholding is applied on the singular values of the 

matrix X+B2; Q is updated by recomposing the matrix using 

the singular vectors and the thresholded singular values. 

This concludes the derivation for solving (8). Solving 

(9) is very similar. Applying the Split Bregman technique to 

(9) leads to the following: 
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This too can be segregated into 3 subproblems. The first and 

the third subproblems remain exactly the same as before, i.e. 

same as (11) and (13). The only change is in the second 

subproblem that solves the joint sparsity penalty: 
2 2
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The solution to (15) has already been derived in [18].  
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Here 
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   , i.e. the diagonal elements 

contain the l2-norms of the rows in 
2( )D X B . 

The final step for both problems is to update the Bregman 

variables: 

1 1B X B P        (16) 

2 2B X B Q        (17) 

This concludes our derivation of both the algorithms. We 

have used upper-case symbols (X and P) for matrices and 

lower-case symbols for corresponding vectors (x and p). 

3. HYPER-SPECTRAL IMAGING 

In this work we address the problem of Compressive 

Hyperspectral Imaging (HSI). A modification of the single 

pixel camera [22] is used to capture images in different 

spectral bands. Formally, this is expressed as: 

,  c=1...Cc c c cy B x        (18) 

where c denotes the c
th

 spectral band, xc is the corresponding 

image, Bc is the corresponding binary projection operator 

realized by the single pixel camera [22], yc is the obtained 

measurement and ηc is the noise. 

This can be succinctly represented in MMV form: 

Y BX         (19) 

where Y is a matrix formed by stacking the yc's as columns, 

similarly X is formed by stacking the xc's as columns and B 

is a block diagonal matrix with Bc's along the diagonals. 

Each of the spectral band images are sparse in the 

wavelet domain. Therefore incorporating the wavelet 

transform into (19), one can write 
TY BW         (20) 

where W is the wavelet transform and α is the sparse wavelet 

transform coefficients (still in arranged in MMV form). 

In [14] it is argued that since, the spectral bands are 

similar to each other, all the images will have the sparsity 

signature in the transform domain. This leads to a signal 

model where the matrix α is joint / row sparse. Such a model 

had been proposed earlier for color imaging [23, 24] and the 

extension to HSI is trivial. The novelty of [14] lies in the 

fact that, they recognized that since the HSI datacube is 

spectrally correlated, the signal X is low-rank; spectral 

correlation leads to linear dependent columns in X. In order 

to exploit both joint sparsity and low-rank information, [14] 

proposed to recover α via: 
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1 22,1 *2
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
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'Mat' denotes the vector has been converted to matrix form. 

This is the synthesis prior form; same as (7). In this work, 

we propose to solve the analysis prior formulation instead: 
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In [25] a Kronecker Compressed Sensing (KCS) 

formulation was proposed to solve the same problem. Since 

the different spectral bands are correlated, the variation 

along the spectral direction is smooth. This smooth variation 

can be compactly captured by very few Fourier coefficients. 

Also, each spectral band is sparse in wavelet domain. 

Combining these two ideas, [25] proposed to maximally 

decorrelate the hyperspectral datacube by applying wavelet 

transform along the columns of X and applying Fourier 

transform along the rows of X. Mathematically this leads to 

the Kronecker product formulation: 
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Here β is the sparse coefficient vector after applying the 

different sparsifying transforms in different directions. In 

[25], the recovery was posed as synthesis prior problem: 

 
2

1
2

min  subject to ( )
T

T

x
vec Y B F W      (23) 

In this work, we propose to enhance the performance of 

the KCS technique by imposing an additional penalty on 

low-rank. Moreover, we propose to solve the analysis prior 

formulation. Our recovery is posed as: 

 
2
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3. EXPERIMENTAL RESULTS 

3.1 Synthetic Data 

First we show results for the problem where the signal model 

is assumed to both sparse and low-rank; it is shown that 

combining sparsity with low-rank property yields better 

results than employing sparsity or rank-deficiency alone. 

The size of the matrix is fixed at 50 X 50; number of non-

zero elements is fixed at 10% and the ranks are varied. A 

binary measurement operator is employed for projecting the 

matrix onto a lower dimension. The sampling ratio is 50%. 

The comparative reconstruction accuracies are shown in 

Table 1. For each of the problems, the ground truth data is 

generated 100 times, and the mean errors are reported. Error 

is measured in terms of normalized mean squares error 

(NMSE). The parameters used for our algorithm are γ1= 

γ2=1e-4, λ1=1e-4 and λ2=10. The l1-norm is minimized by 

SPGL1 [26], and the nuclear norm by [27]. 



Table 1. NMSE from different reconstruction techniques 
Rank Nuclear norm l1-norm l1-norm + nuclear norm 

(proposed) 

2 5.67 X 10-5 2.76 X 10-1 6.33 X 10-6 

5 1.08 X 10-4 2.95 X 10-1 1.19 X 10-5 

We show similar experimental results for the joint 

sparse and low-rank recovery algorithm; the results from our 

proposed method is better than recovery with only nuclear 

norm minimization (low rank penalty) or only joint sparse 

recovery (solved using SPGL1 [26]). Here the size of the 

matrix is 50 X 50, with 10% of the rows to be non-zeroes; 

the rank is varied. The data is generated 100 times and the 

average errors are reported in Table 2. The parameters used 

in our algorithm are γ1= γ2=10 and λ1= λ2=1e-4. 

Table 2. NMSE from different reconstruction techniques 
Rank Nuclear norm L2,1-norm l1-norm + nuclear norm 

(proposed) 

2 3.96 X 10-5 1.19 X 10-1 5.6 X 10-6 

5 1.97 X 10-2 1.19 X 10-1 5.3 X 10-3 

Tables 1 and 2, show that recovery via sparse / joint-

sparse penalties yields considerably poor results and do not 

compare with the others. Our proposed method yields the 

best results, which is about an order of magnitude better than 

nuclear norm minimization (only low-rank penalty). 

3.2 Compressive Hyper-spectral Imaging 

We used three hyperspectral images for experimental 

evaluation. Two images are from the AVIRIS (Airborne 

Visible/Infrared Imaging Spectroscope) sensor and one is 

from the HYDICE (Hyperspectral Digital Imagery 

Collection Experiment) sensor. All three images are freely 

available from [28][29]. Both the AVIRIS and the HYDICE 

sensors capture wavelengths ranging from 400 nm to 2500 

nm. The first AVIRIS image is of Moffett Field, CA and has 

224 continuous bands. The second AVIRIS image is of 

Indian Pine Test site and has 220 continuous bands. The 

third image was  of Washington DC Mall taken from 

HYDICE sensor. This image has 191 bands (after rejecting 

noisy bands).  

The experimental results are shown in Tables 3 and 4. 

The recovery accuracy is measured in terms of PSNR. For 

each of these images a small continuous portion of 160 X 

160 pixels was chosen for the experiments. Measurements 

from the single pixel camera was simulated using Binary 

projection matrices.  

The images from the binary projections were recovered 

using different techniques. The baseline method is the 

Kronecker CS (KCS) [25]. As mentioned before, it was 

shown in [14] that a low-rank + joint-sparse (l2,1+NN) 

recovery technique yields good results for compressive 

hyper-spectral imaging. In this paper we show how the low-

rank + Kronecker CS (l1+NN) model can be used for 

recovering hyperspectral images as well. In [14] a proximal 

projected gradient algorithm (PPXA) is proposed to solve 

the required l2,1+NN minimization problem. In this work, we 

solve both the l2,1+NN and the l1+NN minimization 

problems using Split Bregman technique. The parameters 

used for our algorithm are γ1= γ2=10 and λ1= λ2=1e+4. 

Table 3. PSNR for 25% sampling 
Image l1+NN 

(Proposed) 

l2,1+NN 

(Proposed) 

l1 (KCS) l2,1+NN 

(PPXA)[14] 

Moffett 31.61 31.6 29.21 30.0 

Indian Pine 35.92 36.0 31.66 33.98 

Washington 36.84 37.18 23.36 30.28 

 Table 4. PSNR for 50% sampling 
Image l1+NN 

(Proposed) 

l2,1+NN 

(Proposed) 

l1 (KCS) l2,1+NN 

(PPXA)[14] 

F08small 36.30 36.16 30.11 33.9 

92AV3C 40.09 40.25 31.79 37.18 

Washington 41.89 42.11 26.12 38.59 

The results show that KCS [25] yields the poorest 

recovery. The l2,1+NN recovery solved using proximal 

projected gradient algorithm [14] improves over KCS but 

does not match the recovery results from our proposed Split 

Bregman algorithms. For visual clarity we show the 

reconstructed results for Washington DC, Mall with 25% 

sampling for three bands shown in pseudo colours. We have 

omitted the result from [14] (l2,1+NN using PPXA), because 

our algorithm yields better results. It can be seen that the 

KCS technique cannot recover the original image very well 

while our proposed methods can. 

    
Fig. 1 Left to Right: Original, l2,1+NN, l1+NN and KCS. 

4. CONCLUSION 

The main contribution of this work is to derive efficient 

algorithms to solve under-determined system of linear 

equations where the solution is known to sparse / joint-

sparse and low-rank. It is to be noted that this differs from 

the RPCA signal model where the solution is assumed to be 

a super-position of sparse and low-rank components.  

Sparse / joint-sparse and low-rank signal models arise in 

several areas of scientific imaging [10-15]. Unfortunately, 

there are no efficient algorithms to solve the generic 

problems. In this work, we derive efficient algorithms to 

solve these problems based on the Split Bregman technique. 

The Matlab implementation of these algorithms is available 

at [30, 31]. 

 Compressive Hyperspectral imaging can be modeled 

either as a sparse and low-rank recovery problem or as a 

joint-sparse and low-rank recovery problem. We apply our 

proposed algorithms to solve the said problem. We find that 

our method yields significantly better results than previous 

techniques. In imaging problems an improvement in 0.5 dB 

to 1 dB is considered good; here we improve around 2dB on 

average 
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