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Abstract—Solving linear inverse problems where the solution
is known to be sparse is of interest to both signal processing
and machine learning research. The standard algorithms for
solving such problems are sequential in nature - they tend to
be slow for large scale problems. In the past, researchers have
used Graphics Processing Units to accelerate such algorithms. But
these acceleration schemes were trivial - speed-ups were achieved
by computing the matrix vector products on a GPU. In this work,
we propose a novel technique to accelerate a popular recovery
algorithm (Iterative Soft Thresholding Algorithm - ISTA). The
computational bottleneck in ISTA is in computing the gradient in
every iteration. We accelerate this step by efficiently computing
the gradient numerically via inexpensive updates that can be
easily parallelized on the GPU. Experimental results show that the
proposed method can achieve more than an order of magnitude
improvement, even for moderate sized problems.

Keywords—Sparse Recovery, Gradient Descent, Numerical Dif-
ferentiation, Graphics Processing Units

I. INTRODUCTION

The problem of solving a linear inverse is a classical
problem in signal processing and machine learning research.
For most practical scenarios, the problem is noisy and one
requires solving the following problem:

y = Ax+ η, η ∼ N(0, σ2) (1)

where x is the required solution and η is the noise.

Usually such inverse problems are solved by minimizing
the least squares data fidelity (owing to the Gaussian distribu-
tion of noise):

min
x
‖y −Ax‖22 (2)

However, when the linear system is ill-conditioned, such a
solution (2) does not yield robust results. One needs to regu-
larize the problem. The simplest regularization is a Tikhonov
type regularization:

min
x
‖y −Ax‖22 + λ‖x‖22 (3)

In recent times, there is a lot of interest in solving problems
where the solution is known to be sparse. In such scenarios,
the l2-norm penalty does not yield the desired result; an energy
minimizing penalty leads to a dense solution. To get the desired
solution, one usually regularizes the least squares data fidelity
term by a l1-norm penalty:

min
x
‖y −Ax‖22 + λ‖x‖1 (4)

In signal processing, the field of Compressed Sensing (CS)
is interested in solving sparse recovery problems with the
additional complication that the system is under-determined.
Rather than solving the unconstrained quadratic programming
(QP) problem, CS assumes that the noise variance is known
and solves a constrained Basis Pursuit Denoising (BPDN) [5]
problem instead:

min
x
‖x‖1 such that ‖y −Ax‖22 ≤ ε (5)

Such an assumption is not realistic for the machine learning
community. For sparse regression problems, the noise variance
is not known; instead an estimate on the sparsity level of the
solution can be assumed. This leads to the following LASSO
[12] formulation:

min
x
‖y −Ax‖22 such that ‖x‖1 ≤ τ (6)

The three formulations (4), (5) and (6) are equivalent for
proper choice of parameters λ, ε and τ . For most practical
problems, the unconstrained formulation is preferred assuming
that the regularization parameter λ is known.

One of the most popular algorithms to solve (4) is the
Iterative Soft-Thresholding Algorithm (ISTA) [6]. The ISTA
algorithm consists of two major steps. The first step is a
Landweber iteration that is known to solve a least squares
problem; the second is a thresholding step to achieve a sparse
solution. There are a number of other studies that have ex-
tended the basic ISTA formulation to accelerate convergence,
such as FISTA [1] and NESTA [2].

ISTA is a sequential algorithm - it is slow for large scale
problems. The amount of available information has increased
faster than our ability to process it. It is no longer feasible
to rely on improvements in processors to speed-up matrix
estimation algorithms, and as a result, we have moved towards
a model where we have more processors that can work in
parallel. In this paper, we address the problem of accelerating
ISTA by harnessing the ‘processing parallelism’ of modern
Graphics Processing Units (GPUs).

Parallelizing the soft-thresholding operation on a GPU is
trivial. The challenge is to parallelize the Landweber iteration.
There have been a handful of attempts in the past [3], [4], [10],
[11] to accelerate Landweber iterations on the GPU, but they
all suffer from shortcomings (discussed later). Most of them
are trivial techniques that use GPUs to accelerate the matrix
vector product, required during the Landweber iteration.

In this paper, we propose a novel formulation for accel-
erating the Landweber iteration. As mentioned earlier, this is



fundamentally a gradient descent step. We propose to compute
the gradient numerically. Computing the numerical gradient
can be parallelized on a GPU. But instead of blindly computing
the numerical gradient on the GPU, we update the gradient in
a computationally cheap fashion.

The other advantage of our proposed algorithm is the
ability to solve for cost functions other than the simple l2-
norm. As an example to showcase this ability, we show how
our proposed formulation can be used to solve l1-norm data
fidelity problems of the following form:

min
x
‖y −Ax‖1 + λ‖x‖1 (7)

Such a problem (7) arises when the noise distribution has a
sharper peak, e.g. a Laplacian distribution. Such formulations
have been used in the past to remove sparse impulse noise
from images [13].

The rest of the paper is organized into several sections.
The existing literature is briefly reviewed in the following
section. The proposed methodology is discussed in section 3.
We examine the experimental results in section 4. Finally, we
discuss the conclusions of this work in section 5.

II. LITERATURE REVIEW

Parallelizing the iterative algorithms for sparse recovery on
multi-core architectures is not trivial. In [11], the Iterative Soft-
Thresholding algorithm is parallelized on a GPU and is used
for Synthetic Aperture Radar (SAR) reconstruction problems.
Their parallelism, however, is trivial. They use the GPUs to
compute the matrix vector computations in the Landweber
iteration; this speeds up the algorithm. A similar approach
was used in [10] but in a different application domain; sparse
recovery was used for medical image reconstruction.

In [4] a parallel algorithm is derived for solving the sparse
recovery problem (1), but they impose strong constraints on A.
The said algorithm can only solve the sparse recovery problem
if A is orthogonal. This is a very restrictive assumption and
highly impractical. If the system is orthogonal, one would
not employ a complicated iterative sparse recovery algorithm
for recovery. One would simply apply the transpose of the
orthogonal transform in order to get the desired solution!
Besides, the observation model (1) is never on an orthogonal
basis, either in signal processing or in the regression problems
in machine learning.

In [4] algorithms for speeding up greedy approximate
algorithms for sparse recovery are proposed. Such algorithms
are not of interest to this paper, but we discuss it nevertheless.
Greedy algorithms also have two main stages - i) projection
(matrix vector multiplication) and ii) support detection (of
non-zero coefficients). The projection operation is simply
accelerated on the GPU by taking advantage of the multiple
cores; thus enhancing the matrix vector multiplication. Support
detection requires sorting; this is an inherently sequential
problem. Since the advent of GPUs, however, parallelized
versions of sorting algorithms have been developed. In [4], one
such algorithm is used for support detection. The combination
of GPU projection and parallelized support detection, yields
high speed ups for such greedy approximate algorithms.

Sparse Recovery algorithms can also be parallelized when
the operator A is isotropic, e.g. if it is restricted Fourier or
wavelet kind of operator being applied on two or higher dimen-
sional data (x). In such a situation, it is possible to parallelize
the matrix vector operations of the Landweber iterations to
certain extent by exploiting the isotropic properties, i.e. if one
wants to compute a 2D Fourier transform, one can first apply
the 1D Fourier transform along the columns first (in parallel)
and then apply the 1D Fourier transform along the rows (in
parallel).

A recent study [9] proposed a formulation based on
stochastic optimization. They presented a method to parallelize
the Landweber iterations by making use of concepts in stochas-
tic gradient descent. Instead of directly computing the full
gradient, they compute stochastic gradients on small parts of
the data in parallel on multiple cores. They could then closely
estimate the actual gradient update (on the entire data) by com-
puting the average of all the stochastic gradient updates, since
the expected error asymptotically reaches 0. Their approach is
hardware agnostic - it can be used to accelerate Landweber
iteration even on multi-core CPU architectures. Our approach,
however, has been tuned to exploit the massive multi-threading
provided by GPU architectures, and as a result, we are able
to obtain much higher speed-ups (over an order of magnitude
even for moderate sized problems).

III. PROPOSED ALGORITHM

In this work, we focus on iterative methods for sparse
recovery. Our initial interest is in the following unconstrained
form of the inverse problem:

min
x
‖y −Ax‖22 + λ‖x‖1 (8)

In the widely used Iterative Soft-Thresholding Algorithm
(ISTA), the quadratic programming problem described above
is expressed in the following form by incorporating Landweber
iterations:

min
x
‖b−Ax‖22 +

λ

α
‖x‖1 (9)

where
b = xk−1 +

1

α
AT (y −Axk−1) (10)

where b is defined in each iteration based on the value of x
from the previous iteration; α is the step size and usually is
set at the maximum eigenvalue of ATA.

The equivalence of (8) and (9) is not trivial; the derivation
is based on the majorization-minimization approach [8], [14].
To further solve (9), we take its gradient and equate it to zero:

∆x‖b−Ax‖22 +
λ

α
‖x‖1 = 0

⇒ ∂

∂x(i)
{(b(i) − x(i))2 +

λ

α
|x(i)|} = 0

⇒ x(i) − b(i) +
λ

2α
signum(x(i)) = 0

⇒ x(i) = signum(b(i)).max(0, |b(i)| − λ

2α
) (11)

The notation x(i) is used to denote the ith component of the
vector x - we will use the same notation for the rest of the



paper. The last step discussed above is called soft-thresholding
or shrinkage [14]. When applied on the full vector x, this is
expressed as,

x = signum(b).max(0, |b| − λ

2α
)

= softThreshold(b,
λ

2α
) (12)

The complete algorithm for solving the sparse recovery
problem consists of a Landweber update followed by a soft-
threshold operation in each iteration. Such iterative methods
that are based on thresholded Landweber iterations involve the
use of both a forward as well as a backward transform - this
is not always feasible as the backward operator may not be
available or may be expensive.

In the remainder of this section, we develop a method to
solve the sparse recovery problem that can be used even in
situations where the backward operation is not feasible. We
then extend our proposed method to solve the much harder
problem of l1-norm minimization.

A. Sparse Recovery by l2-norm minimization

The Landweber iteration can be expressed as the following
gradient descent step:

b = xk−1 −
1

2α
∇x‖y −Ax‖22

∣∣
x=xk−1

(13)

Instead of computing the gradient analytically as done in (9),
we compute the numerical gradient. The numerical gradient
for a function f : R→ R at a point x is given by:

f ′(x) ≈ lim
h→0

f(x+ h)− f(x− h)

2h
(14)

The gradient update for the l2-norm minimization problem
is:

b = xk−1 −
1

2α
∇xF (x) (15)

where
F (x) = ‖y −Ax‖22 (16)

Computing the gradient numerically, we have:

∇xF (x)(i) = lim
hi→0

F (x+ hiêi)− F (x− hiêi)
2hi

(17)

where ∇xF (x)(i) is the ith component of the gradient vector
and êi is a vector in the standard basis - the vector with a 1
in the ith coordinate and 0’s elsewhere.

Simplifying the above expression, we have:

F (x+ hiêi) = ‖y −A(x+ hiêi)‖22
= (y −A(x+ hiêi))

T (y −A(x+ hiêi))

= yT y − 2yTA(x+ hiêi)

+ (A(x+ hiêi))
T (A(x+ hiêi))

= yT y − 2yTAx− 2hiy
TAêi + (Ax)T (Ax)

+ 2hi(Aêi)
T (Ax) + h2i (Aêi)

T (Aêi) (18)

and similarly,

F (x− hiêi) = ‖y −A(x− hiêi)‖22
= (y −A(x− hiêi))T (y −A(x− hiêi))
= yT y − 2yTA(x− hiêi)

+ (A(x− hiêi))T (A(x− hiêi))
= yT y − 2yTAx+ 2hiy

TAêi + (Ax)T (Ax)

− 2hi(Aêi)
T (Ax) + h2i (Aêi)

T (Aêi) (19)

Before we use the above expressions for the computation
of an element of the gradient vector, we observe that not
every term needs to be re-computed in each iteration - certain
terms can be pre-computed and kept in memory. The obtained
expressions can be reduced to:

F (x+ hiêi) = t1 − 2yTAx− t2i + (Ax)T (Ax)

+ 2hi(Aêi)
T (Ax) + t3i (20)

and similarly,

F (x− hiêi) = t1 − 2yTAx+ t2i + (Ax)T (Ax)

− 2hi(Aêi)
T (Ax) + t3i (21)

where terms t1, t2i and t3i can be pre-computed for each
position i in the gradient vector.

The advantage of computing the numerical gradient now
becomes apparent - a backward transform is no longer needed.
At first this method seems suboptimal as it appears that
we would need to compute the elements of the gradient
vector one at a time. While each element of the gradient
vector can be efficiently computed using the above mentioned
pre-computations and vectorization techniques, computing the
entire gradient vector in each iteration may be infeasible for
higher-dimensional vectors. This is where the numerical gra-
dient offers a second advantage - each element of the gradient
vector can be computed independently and, potentially, in
parallel.

The proposed method consists of four major steps in
each iteration - the forward operation, matrix-vector products,
gradient update and soft-thresholding. Matrix-vector products
and soft-thresholding are inherently parallelizable on a GPU.
The bottleneck here is the gradient computation. By computing
the gradient numerically, we can avoid using the backward
operator and each element of the gradient vector can be
computed efficiently and in parallel using the multi-threaded
CUDA architecture. Our method can therefore be applied to
any operator whose forward operation can be implemented on
a GPU.

B. Sparse Recovery by l1-norm minimization

We now address the following optimization problem:

min
x
‖y −Ax‖1 + λ‖x‖1 (22)

The gradient update for the l1-norm minimization problem
is:

b = xk−1 +
1

2α
∇xF (x) (23)

where
F (x) = ‖y −Ax‖1 (24)



Extending our proposed approach, we have:

F (x+ hiêi) = ‖y −A(x+ hiêi)‖1
= ‖y −Ax− hiAêi‖1
=
∑
j

|y(j) − (Ax)(j) − hi(Aêi)(j)| (25)

and similarly,

F (x− hiêi) = ‖y −A(x− hiêi)‖1
= ‖y −Ax+ hiAêi‖1
=
∑
j

|y(j) − (Ax)(j) + hi(Aêi)
(j)| (26)

Computing the gradient numerically (omitting the lim sign
for the sake of convenience):

∇xF (x)(i) =
F (x+ hiêi)− F (x− hiêi)

2hi

=

∑
j |y(j) − (Ax)(j) − hi(Aêi)(j)|

2hi

−
∑

j |y(j) − (Ax)(j) + hi(Aêi)
(j)|

2hi
(27)

Computing the gradient vector is not trivial - each element of
the gradient vector requires computing the l1-norm of a vector.
We show that it can be parallelized efficiently on a GPU by
using a vectorization technique.

Let us construct a matrix P , such that:

P (i,j) =
|y(j) − (Ax)(j) − hi(Aêi)(j)|

2hi
(28)

Computing each element of P involves only scalar op-
erations - it can be done in constant time. Moreover, all
the elements of P can be computed in parallel as they
are independent of each other. The matrix P can hence be
very efficiently computed using the massively multi-threaded
CUDA model.

We could similarly construct a matrix Q, such that:

Q(i,j) =
|y(j) − (Ax)(j) + hi(Aêi)

(j)|
2hi

(29)

The gradient vector can then be computed using the fol-
lowing inherently parallel operation:

∇xF (x) = (P −Q)~1 (30)

where ~1 is a vector of all 1’s.

IV. EXPERIMENTAL EVALUATION

In this section, we analyze the performance of our approach
for the sparse recovery problem. The algorithms were imple-
mented on MATLAB with multi-threading enabled, and the
experiments were run on AMD Phenom II X3 710 2.6 GHz
Triple-Core Processors. The proposed algorithms were paral-
lelized on an NVIDIA GeForce GTX 680 graphics processor
with 1536 CUDA cores and a standard memory of 2048 MB.

The experimental results have been discussed in Tables
1 and 2. To ensure the robustness of our experiments, we

TABLE I. SPARSE RECOVERY: l2-NORM MINIMIZATION

Size Sparsity
Standard ISTA (CPU) Proposed L-2 (GPU)

Speedup
Time(s) NMSE Time(s) NMSE

750 × 1250 50 3.1 4.93E-06 1.8 4.96E-06 1.72

1500 × 2500 100 14.9 5.77E-06 5.6 5.76E-06 2.66

3000 × 5000 200 58.4 6.27E-06 8.4 6.10E-06 6.95

4800 × 8000 320 149.5 6.59E-06 11.5 6.63E-06 13

6000 × 10000 400 232.03 7.27E-06 16.16 7.03E-06 14.36

TABLE II. SPARSE RECOVERY: l1-NORM MINIMIZATION

Size Sparsity
Proposed L-1 (GPU)

Speedup (vs ISTA)
Time(s) NMSE

750 × 1250 50 4.7 3.70E-02 0.66

1500 × 2500 100 7.7 2.70E-02 1.94

3000 × 5000 200 17 1.80E-02 3.44

4800 × 8000 320 28.5 1.40E-02 5.25

6000 × 10000 400 41.5 1.33E-02 5.59

generated 5 i.i.d Gaussian matrices (A), for each experimental
configuration. The experiment was repeated 100 times with
different sparse vectors for each of these matrices. We report
both the average reconstruction accuracy (measured in terms
of the Normalized Mean Squared Error) and the average
reconstruction time for matrices of each size.

Table 1 presents a comparative evaluation of our proposed
algorithm accelerated ISTA (aISTA) for l2-norm data fidelity
(4) with the sequential ISTA. Even on problems of moderate
size, we find the acceleration to be commendable, without a
deterioration in the reconstruction accuracy. We achieve an
acceleration of over an order of magnitude (around 14 times)
for the two larger matrices used in our experiments, and we
suspect that the speed-ups would continue to increase as the
size of the data approaches what is typically used in practice.

In Table 2, we present the empirical accuracy of our
proposed algorithm for the l1-norm data fidelity (7), and
compare the time taken for reconstruction with that of the
sequential ISTA. For the two larger problems, we observe that
our method is able to accelerate sparse recovery by more than
5 times.

These results suggest that the proposed algorithm is supe-
rior to the existing, sequential approach. The proposed method
is faster, even for moderate sized systems. We expect that for
larger problems, the acceleration will be more pronounced.

V. CONCLUSION

In this work we have proposed a new approach to solve
sparse recovery problems. Unlike prior works, it does not
use a GPU to trivially speed-up the matrix-vector products
required in the Landweber iteration. Our method hinges on
computing the numerical gradient of the cost function in a
parallel fashion. The goal of our work was to show how
this approach can accelerate the sequential sparse recovery
algorithms. We achieve more than an order of magnitude
acceleration for moderate size problems over the sequential
approach.



In our experiments we only considered the Iterative Soft-
Thresholding Algorithm, which is the most commonly used
algorithm for sparse recovery problems. There exist various
other algorithms such as FISTA and NESTA that are based
on the ISTA approach. Our proposed method can be used to
accelerate these algorithms as well. In short, any algorithm
that uses a Landweber iteration can benefit from our proposed
acceleration technique. Algorithms for multiple measurement
vector (MMV) problems such as the row-sparse multiple
measurement vector recovery algorithms [7] can also be ac-
celerated using our method. In the future, we plan to extend
our approach to structured sparsity problems such as group-
sparse recovery and row-sparse MMV recovery.

The added benefit of our approach is its ability to handle
cost functions other than the l2-norm. This is because the gradi-
ent is computed numerically. As an example, we have showed
how the l1-norm data fidelity problem can be handled with our
proposed approach. But even for the l1-norm data fidelity, we
solved a linear system of equations. In the future, we would
like to extend the formulation for non-linear sparse recovery
problems, such as exponential or logarithmic functions instead
of linear functions.
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