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ABSTRACT 

 

Compressed sensing addresses the problem of recovering 

a sparse solution to a system of linear under-determined 

equations. In this work we are interested in deriving 

algorithms when the system is non-linear. Our algorithm 

is based on gradient descent approach followed by 

subsequent soft thresholding. We have tested our 

algorithm for both l2-norm and l1-norm cost functions 

(data fidelity) with linear and exponential systems.  

 

Index Terms— Non linear compressed sensing, non 

linear sparse recovery, algorithms. 

1. INTRODUCTION 

Compressed Sensing (CS) studies the problem of solving 

an under-determined linear inverse problem when the 

solution is known to be sparse. Since its inception in 

2006-07, CS has penetrated almost all application 

domains of signal processing - seismic imaging, 

astrophysics, medical imaging, biomedical signal 

processing, bio-informatics, radar imaging, to name a 

few. 

As electrical engineers and computer scientists, we 

always linearize our system. Such linearity assumptions 

serve our purpose on most cases. But there are several 

applications where one cannot make such simplifying 

assumptions. For such scenarios, one needs to solve a 

non-linear inverse problem.  

Literature on non-linear sparse recovery is itself 

sparse. There are two studies [1, 2] of theoretical nature 

that explores the conditions under which such recovery is 

possible. As engineers, we are more interested in solving 

the problems. There has not been any concerted effort in 

developing such non-linear sparse recovery algorithms. 

To the best of our knowledge, there is only a single work 

[3] (back in 2008) that proposed a greedy algorithm to 

solve the problem. However, greedy algorithms are 

almost never used in practice for standard compressed 

sensing problems. Both in theory and in practice, 

optimization based sparse recovery approaches yield 

better results. Therefore, there is a need to develop 

algorithms for non-linear sparse recovery that are based 

on an optimization framework. In [1], the theoretical 

guarantees of non-linear CS are derived for optimization 

based algorithms.  

In the following section we motivate the readers 

regarding the practical need of such non-linear CS 

algorithms. We discuss about problems in Magnetic 

Resonance Imaging (MRI), non-linear sparse 

classification and briefly on radar imaging. The baseline 

for our proposed algorithm will be discussed in section 3. 

The actual derivation will be in section 4. The 

experimental results will be shown in section 5. Finally in 

section 6, the conclusions of the work and future 

directions of research are discussed.  

2. NEED FOR NON-LINEAR CS 

2.1. Quantitative Magnetic Resonance Imaging 

Anyone familiar with MRI [4] knows that the intensity at 

a voxel / pixel 'i' is given by: 
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where ρ0 is the proton density (spin density), TR is the 

repetition time and TE the echo time of the applied 

magnetization. The T1 and the T2 are the tissue 

parameters. 

In standard MRI, one is not concerned about the 

tissue parameters; the only problem is to recover the 

intensity values. For MRI, the data is acquired in the 

Fourier domain (K-space); the data acquisition model is 

expressed as: 

, (0,1)y Fx N       (2) 

where x is the intensity image, F is the Fourier transform, 

η is the noise and y is the acquired K-space data.  

When the K-space is fully measured, recovering the 

intensity image is trivial - one only needs to apply the 

inverse Fourier transform (followed by denoising). But, 

sampling the full K-space is time consuming. In recent 

years, the practice is to partially sample the K-space and 

recover the image using CS techniques [5, 6] that exploit 

the sparsity of the image in the transform domain. In such 

a scenario the data acquisition is expressed as: 

y RFx        (3) 

The corresponding recovery is via solving the following 

problem: 
2
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where Ψ is the sparsifying transform. 



Such techniques are good for recovering intensity 

images; unfortunately such images are not quantitative. 

Referring to (1), it is easy to notice that the intensity 

changes depending on the scan parameters TE and TR. 

Quantitative imaging modalities are agnostic to scan 

parameters - T1 / T2 maps are such quantitative images. 

Unfortunately, such maps cannot be acquired directly. 

They need to computed from the multiple intensity 

images via non-linear curve fitting. There are CS based 

techniques to accelerate such multi-echo scans [7, 8]. 

But, assume an alternate scenario where we want to 

compute the T2 map. In such a case, the repetition time 

(TR) is kept small, so that (1) can be approximated as: 
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The corresponding data acquisition could be expressed as: 
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If we had non-linear sparse recovery techniques at our 

disposal, we could directly compute the T2 maps from one 

or two images. This is a massive reduction in data 

acquisition times compared to multi-echo scans where at 

least 32 images are needed for estimating the same map. 

2.2. Non-linear Sparse Classification 

In the seminal paper on sparse classification [9] it is 

assumed that training samples of any class form a linear 

basis for representing test samples of the same class; 

expressed mathematically, 

, ,1 ,1 ,2 ,2 , ,...
k kk test k k k k k n k nv v v v          (7) 

where vk,i are the training samples and ε is the 

approximation error. 

Equation (7) expresses the assumption in terms of the 

training samples of a single class. Alternately, it can be 

expressed in terms of all the training samples so that 

,k testv V        (8) 

where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]
k Cn k k n C C nV v v v v v v  

and 
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In a classification problem, the training samples and 

their class labels are provided. The task is to assign the 

given test sample with the correct class label. This 

requires finding the coefficients αk,i in equation (1). By 

assumption, α is sparse since it has non-zero values only 

corresponding to the correct class. In [9] the solution is 

framed as a sparse optimization problem. 
2
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It was pointed out in [10, 11] that there is no reason 

that the linearity assumption (8) should hold. In general, 

one can assume a non-linear form: 

, ( )k testv f V       (10) 

But the sparsity assumption still holds. Therefore, one 

required solving a non-linear sparse recovery problem: 
2
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In [10, 11], naive algorithms were proposed to solve 

such sparse recovery problems. The results showed 

improvement over the linear approach. 

2.3. Through Wall Radar Imaging 

First we will consider the simple problem of radar 

imaging of a human being in free space. Such a problem 

can be expressed as a linear model: 

y Fx         (12) 

Here x is the target, y is the received data (at the radar) 

and F is the Fourier transform. 

In order to get a well resolved image, the aperture of 

the radar should be large and to cover a large field-of-

view the number of antennas on the radar should be large 

as well. Increasing the number of receiver antennas on the 

radar is cumbersome. Therefore in a recent study [12], it 

was shown that CS can be used to decrease the number of 

antenna elements without compromising the quality of the 

image.  

However, free space imaging is a simplifying 

assumption. In all practical situations, the target is behind 

an obstruction (like a wall). In such a situation, the 

multipath effects coupled with refraction and diffraction 

leads to a non-linear imaging problem. The forward 

problem (image formation) cannot be expressed as a 

linear problem (12). One needs to express it in a non-

linear form: 

( )y f x         (13) 

In such a scenario, the recovery should be posed as a non-

linear CS problem: 
2
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where C is a constant. 

In this section, we have discussed several motivating 

problems for non-linear CS. There are more, but given the 

limitations in space we refrain from discussing these 

topics. 

3. BRIEF REVIEW OF ITERATIVE SOFT 

THRESHOLDING 

We take the simple problem of recovering a sparse 

solution to a linear inverse problem: 

y Ax         (15) 

One of the best known solutions for this problem is via l1-

minimization. 
2
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We know that, l1-minimization is a quadratic 

programming problem that needs to be solved iteratively. 

Unfortunately, gradient descent cannot be directly applied 

owing to the non-differentiability of the l1-penalty. In 

such a scenario, one of the most favoured methods to 

solve this problem is via the Majorization Minimization 

approach.   

 



3.1. Majorization-Minimization 
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(b) 
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Fig. 1. Majorization Minmization [13] 

 

Fig. 1 shows the geometrical interpretation behind 

the Majorization-Minimization (MM) approach. The 

figure depicts the solution path for a simple scalar 

problem but essentially captures the MM idea.  

Let, J(x) is the function to be minimized. Start with 

an initial point (at k=0) xk (Fig. 1a). A smooth function 

Gk(x) is constructed through xk which has a higher value 

than J(x) for all values of x apart from xk, at which the 

values are the same. This is the Majorization step. The 

function Gk(x) is constructed such that it is smooth and 

easy to minimize. At each step, minimize Gk(x) to obtain 

the next iterate xk+1 (Fig 1b). A new Gk+1(x) is constructed 

through xk+1 which is now minimized to obtain the next 

iterate xk+2(Fig. 1c). As can be seen, the solution at every 

iteration gets closer to the actual solution. 

3.2. Landweber Iteration 

Let us consider the minimization of the following 

optimization problem, 
2

2
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For this minimization, Gk(x) is chosen to be, 

2
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where a is the maximum eigenvalue of the matrix A
T
A. 

This majorizes the original cost function. 
2
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Using the identity 2

2|| || 2T T Tb x b b b x x x    , one can 

write, 
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where K consists of terms independent of x. 

Therefore, minimizing (17) is the same as minimizing the 

following, 
' 2

2( ) || ||kG x b x       (18) 

where 
1

( )T
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This update is known as the Landweber iteration. 

3.3. Iterative Soft Thresholding 

After combining the Landweber iterations (18) with 

the original problem (16), we get the following problem 

in each iteration, 

2
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min

x
b x x

a


      (19) 

The above function (19) is actually de-coupled, i.e. 

2 2
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Therefore, (20) can be minimized term by term, 
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Setting the partial derivatives to zero and solving gives, 

( ) ( ( ))max(0,| ( ) | )
2

x i signum b i b i
a


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Written compactly in matrix vector form: 

( )max(0,| | )
2

x signum b b
a


    

This leads to a simple two-step iterative solution for the 

l1-minimization problem (16). 

 

Initialize: 0 0   

Repeat until convergence 

Step 1. 
1

( )T

k kb x A y Ax
a

    



Step 2. ( )max(0,| | )
2

x signum b b
a


    

End 

 

4. PROPOSED ALGORITHM 

The iterative soft thresholding algorithm has two steps in 

every iteration. The first step is the Landweber iteration, 

followed by soft thresholding. A closer look at the 

Landweber iteration reveals that it is a gradient descent 

step. A
T
(y-Axk) is the negative of the gradient - and hence 

the descent direction; and 1/a is the step-size. 

Intuitively one can understand the IST algorithm. It is 

fundamentally a gradient descent method. Therefore, it is 

natural that there is a gradient descent step - Landweber 

iteration. But, it is known that the solution we are seeking 

for is sparse. To enforce sparsity we have the additional 

soft thresholding step. 

Compressed Sensing solves a linear inverse problem: 

y Ax          

Since the noise is Gaussian, the cost function to minimize 

is the Euclidean norm. But, the additional assumption is 

that the solution is sparse. Hence the l2-norm data fidelity 

term is regularized by an l1-norm penalty on the solution. 
2
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min

x
y Ax x     

The IST algorithm as per our intuitive understanding 

can also be explained in two steps. The cost function we 

are interested in minimizing is the l2-norm data fidelity. 

The Landweber iteration, does just that. The l1-norm 

promotes a sparse solution. In the algorithm, we promote 

the sparsity by thresholding the gradient update step. The 

Landweber iteration can be alternately expressed as 

follows: 

 

Initialize: 0 0   

Repeat until convergence 

Step 1. , 1/
k

k x x
b x y Ax a 


      

Step 2. ( )max(0,| | ), / 2x signum b b a       

End 

 

The IST algorithm, when expressed in this form, looks 

more attuned to the well known gradient descent 

algorithms we know. 

In non-linear sparse recovery the inverse problem is 

as follows: 

( )y f x         (20) 

The sparse recovery problem in the non-linear scenario 

can be expressed as: 
2

2 1
min ( )

x
y f x x      (21) 

Following the same intuition as before, we can have 

an algorithm that minimizes the l2-norm data fidelity term 

followed by a sparsity promoting step. We will have a 

non-linear IST algorithm.  

 

Initialize: 0 0   

Repeat until convergence 

Step 1. 
2

2
( )

k

k
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b x y f x


     

Step 2. ( )max(0,| | )x signum b b     

End 

 

This algorithm can only yield a solution when certain 

conditions are met. Previously the Moreau’s proximal 

operator and the Lipschitz conditions have been used to 

derive accelerated IST algorithms like FISTA [14]. The 

general idea is to define a proximal operator that solves 

the composite non-smooth problem given by 

( ) ( ) ( )F x h x g x      (22) 

where h(x) is smooth function with a Lipschitz continuous 

gradient L: 

2 2
( ) ( ) , , nh x h z L x z x z         (23) 

and g(x) is a non-smooth convex function. 

For our case, 
2

2
( ) ( )f x y f x   and

1
( )g x x . 

When the condition (23) is satisfied, the step size for the 

descent algorithm is determined by the upper bound on L, 

i.e. 
1

L
  . 

Signal processing engineers are aware that the 

bounds and conditions set by CS are rather pessimistic. 

Although in theory one would require h(x) to be 

continuously differentiable, we will show that our 

proposed algorithm also works for non-differentiable 

functions such as the l1-norm data fidelity.  

5. EXPERIMENTAL EVALUATION 

The only algorithm that can be used as a baseline for non-

linear sparse recovery is [3], which is an approximate 

greedy technique. We conduct our experiments with two 

different functions - linear (y=Ax) and exponential 

(y=exp(Ax)), each with two different data fidelity terms - 

Euclidean (l2-norm) and Manhattan (l1-norm). The matrix 

A is i.i.d Gaussian. The experiments were conducted for 

different sampling ratios' sampling ratio is defined as the 

ratio between the number of columns and number of rows 

in A. The reconstruction error is measured in terms of 

Normalized Mean Squared Error (NMSE) defined as: 

2

2

original reconstructed
NMSE

original


 . 

For each sampling ratio, the matrix was generated a 

hundred times, and the average NMSE is reported.  

In Tables 1 to 4, the results linear function with l2-

norm data fidelity, linear function with l1-norm data 

fidelity, exponential function with l2-norm data fidelity 



and exponential function with l1-norm data fidelity are 

reported respectively. The results are compared against 

the non-linear greedy algorithm [3].  

For all the experiments the size of the matrix A was 

fixed at 60 X 100. The number of non-zero entries in the 

signal is varied. The variation of reconstruction error is 

reported. 

 

Table 1. Error on Linear function with l2-norm data 

fidelity  

# Non-zero 

values 

σ, τ NMSE 

proposed 

NMSE Greedy 

algo [3] 

5 0.01, 5 .0073 0.0761 

10 0.01, 5 .0115 0.0854 

15 0.01, 5 .0138 0.0985 

20 0.01, 5 .0441 0.1569 

 

Table 2. Error on Linear function with l1-norm data 

fidelity  

# Non-zero 
values 

σ, τ NMSE 
proposed 

NMSE Greedy 
algo [3] 

5 0.01, 5 .0293 0.1058 

10 0.01, 5 .0348 0.1394 

15 0.01, 5 .0261 0.1661 

20 0.01, 5 .0680 0.1973 

 

Table 3. Error on Exponential function with l2-norm data 

fidelity  

# Non-zero 

values 

σ, τ NMSE 

proposed 

NMSE Greedy 

algo [3] 

5 0.02, 0.03 0.0050 0.0585 

10 0.02, 0.03 0.0120 0.1124 

15 0.02, 0.03 0.0292 0.1576 

20 0.02, 0.03 0.0251 0.2123 

 

Table 4. Error on Exponential function with l2-norm data 

fidelity  

# Non-zero 
values 

σ, τ NMSE 
proposed 

NMSE Greedy 
algo [3] 

5 0.001, 0.05 0.0234 0.1058 

10 0.001, 0.05 0.0386 0.1644 

15 0.001, 0.05 0.0580 0.1502 

20 0.001, 0.05 0.0942 0.2813 

 

We observe that our proposed method always yields 

better results than the greedy algorithm we compared 

against. This is not surprising, as it is well known that 

optimization based methods (with proper choice of 

parameters) yield better results than greedy algorithms. 

We carried out a simple t-test to determine if our 

method yields significantly different result compared to 

the non-linear greedy algorithm. We found that our 

method is significantly superior than the other at 99% 

confidence.  

 

 
Fig. 1. Convergence of plot of proposed algorithm for 

exponential functions 

 

In Fig. 1, we show the convergence plot of our 

proposed algorithm for the exponential function with l2-

norm and l1-norm data fidelity terms. The convergence is 

very slow. This is because the step size used in our 

approach (following Lipschitz condition) is too small 

(pessimistic). 

6. CONCLUSION 

Our paper is one of the first algorithmic works on non-

linear sparse recovery. Prior studies [1, 2] concentrated on 

the theory of non-linear compressed sensing. We have 

conclusively shown that our proposed method is better 

than the only existing algorithm [3] on non-linear sparse 

recovery. 

However we must admit that our work is a proof-of-

concept. There are two issues with our current approach. 

The first one is the convergence. The step size is based on 

the Lipschitz condition. This is a pessimistic bound. We 

must find ways to increase the step size in order to 

accelerate convergence. 

The other issue is with the way we are computing the 

gradient in each iteration. In order to keep our method 

general, we are using a numerical gradient. This is slow. 

Better results can be obtained if the gradient is computed 

analytically. These issues need to be addressed, before 

such non-linear sparse recovery algorithms can be used 

for large scale problems. 
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