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ABSTRACT

This study proposes a new algorithm for recovelovg
rank matrices from their under-sampled projecti@isch
algorithms are traditionally based on the Schapten-
(0<p<l) norm minimization. The minimization problem is
solved directly, requiring the computing of a sitagu
value decomposition (SVD) at each iteration. Thisirne
consuming and greatly limits the speed of the dligas
and its applicability to real life problems. To oveme
this problem, we replace the Schatten-p norm by its
equivalent Ky-Fan norm. For minimizing the said mor
we derive an algorithm that does not require compgut
SVD'’s. Instead, it computes a Cholesky decompasitio
which requires many less computations than SVD. Our
method vyields an order of magnitude improvement in
speed over existing techniques. We apply our prghos
algorithm on the dynamic MRI reconstruction problem
and obtain significant improvement in computational
speed over the existing technique.

Index Terms—Matrix completion, dynamic MRI.
1. INTRODUCTION

The problem of recovering a low-rank matrix frons it
under-sampled projections arises in many areagyimals
processing and machine learning. It is a typicakise
problem:
ym><1 = A(ann)+,7mx11A:D Lo (1)
where y is the measurement, X is the signal to be
reconstructed — assumed to be of low-rank and thés
mapping from a higher dimensional space©0¥"to a
lower dimensional space of™.

The conventional approach to solve (1) uses
factorization; the matriX is representeda¥=UV where
U andV are low-rank matrices. The problem is solved via:

min]y = AQV)[; + (V] +VI,) @

Unfortunately, this is a bilinear problem and natiyr
non-convex. This is usually solved via the methdd o
alternating least squares. At every iteratibhjs solved
assumingV is fixed and vice versa. This technique is
simple to implement but is not optimal. Also onede to
know the rank ofX, which is unknown for most practical

problems. But the main issue with this approadhas the
problem is non-convex, thus there are no convemgenc
guarantees. It is often observed that the objedtimetion
decreases initially but keeps on increasing aftehite.
Ideally, searching for the minimum rank solution
requires solving the following optimization problem

minrank(X) subject toy-A X |D§ <e (3)

where the noise parameters dependent on the variance
of  and is assumed to be known.

Solving this rank minimization problem is NP handda
henceforth not practical. Theoretical studies implieol
mathematics [1, 2] have shown that it is possilde t
guarantee the recovery of the exact solution bgxieg
the NP hard rank minimization by its closest convex
surrogate the nuclear norm minimization:

mX|n||X|| subject tgly- A X |[f <¢ 4)

where the nuclear nortfX |, is defined as the sum of the

singular values of X. This is a convex problem ttet be
solved by semi-definite programming. However more
efficient algorithms exist.

Taking cues from non-convex compressed sensing, it
has been further observed that instead of emplotfieg
convex nuclear norm, better recovery can be actieve
using the non-convex Schatten-p nofx§<1) [3-5]:

mxin||X||Sp subject to|y - A X |[i <¢ (5)
The Schatten-p nornfX| is defined as thé;norm of

the singular values of X.

The price to be paid for applying the theoretically
sound solution (4)-(5) instead of the factorizatimased
approach (2) is the speed. Schatten-p norm mintioiza
problems however require computing the singulaueal
decomposition (SVD) of the matrix at every iteratithis
is computationally complex and is the main sourfe o
delay. Our aim is to solve the same Schatten-p norm
minimization problem, but without computing the S\éb
each iteration. We propose to replace the Schatteorm
by its equivalent Ky-Fan norm and we derive an
algorithm for its minimization The Ky-Fan norm
minimization does not require computing SVDs. lte®
on the Cholesky Decomposition, which is much cheape
to compute. This naturally speeds up the algorithm.



Low rank matrix recovery has several applications.
An important problem is dynamic MRI reconstruction.
Casorati matrix formed by stacking the dynamic MRI
frames as columns is low-rank owing to the temporal
correlation between frames. The problem is to rectivis
low-rank matrix given the under-sampled Fourier
frequency data of each frame. We apply the proposed
matrix recovery algorithm for the said problem.

In the paper, the matrix recovery algorithm is
proposed in section 2. Its application to the dyicakiRI
application is described in section 3. The resulte
examined in section 4 and the conclusions are prege
in section 5.

2. MATRIX RECOVERY ALGORITHM

In a low-rank matrix recovery problem, we are regdito
solve (5). However solving the constrained problem
directly is difficult. Therefore we propose to selthe
following problem instead:

1
min 1Y = AL + A, ©

The problems (5) and (6) are the same for the prope
choice oft ande. In this work, we assumeis known.
SinceA(.) is a linear function, it is possible to write (&)
the following matrix-vector notation:

1
min—ly - A, +A|X[g, Y

Herex=vec(X) andy=vec(Y).

Following the Majorization-Minimization approach, [B],
the above form (7) can be expressed at each dargk)
in the following fashion:

1 A
min 2o + A .
where b = x® + % AT (y— Ax®)

Herea is slightly higher than the maximum eigenvalue of
A'Ain order to ensure convergence.

Reshaping the vectolsandx to their matrix form$B and

X respectively, (8) is expressed as:

. 1 2 /1 p
minZ[B- X + 2, ©

There exists a direct solution to this problem [4];
however this requires computing the singular value
decomposition (SVD) oB at each iteration. Computing
SVD’s is time consuming and is the main computation
bottleneck for all low-rank matrix recovery algbuits.
The computational complexity for SVD &nn“+11n° [8],
where m and n are the dimensions of the matrix.o&im
all efficient algorithms for SVD based low-rank miat
recovery problems exploit the fact that the matdaxbe
recovered is low rank and hence computing theSWD
is not necessary, computing the partial SVD using
LAPACK routines slightly improves the computational
cost. However, in order to compute the partial S\dbe

needs to specify the number of singular values ¢o b
computed, i.e. one needs to have an estimate afatiie
of the matrix to be recovered. This rank estimai®ra
heuristic step that either yields poor reconstarctiesults
like Singular Value Thresholding (SVT) [9] or is
markedly slow like Fixed Point Continuation [10].

In this work we aim to speed up low-rank matrix
recovery techniques by about an order of magnitude
compared to previous SVD based methods. To reath th
goal, we replace the Schatten-p norm in (9) by its
equivalent Ky-Fan norm [3],

P
ming(X):g(X):£||B—X||z+iTr(XTX)El (10)
X 2 a
Taking the derivative of(X) and equating it to zero (the
intermediate steps are easy to compute; it justiires
applying the chain rule for multivariate calculus):

A T urE
X-B+—p(X'X)2 X=0 (12)
a
Re-arranging (11) as:
A oot
| +=p(X'X)2 |[X=B (12)
a

p_
the term inside the brackets+i p(XTX)?2 ‘is a positive
a
definite matrix which is easy to invert using thedlzsky
p_
decompositiont A p(XTX)2 "=R'R. Since the
a

algorithm is iterative, the ternX™ X is computed from
the previous iteration. Using the Cholesky decoriijmos
X becomes easy to solve from (7) in two steps:

R RX =B
z

step 1.Solve :R'Z =B
step 2.S0lve :RX =Z
SinceRis a triangular matrixX can be solved very fast.
The Cholesky decomposition is a computationally
demanding operation in our algorithm. However tbstc

of computing the Cholesky decomposition is ofign®
[8]; this is significantly less compared to the tcad

13)

P
computing an SVD. Sincda+i p(X"X)2 Yis always full
a

rank, there is no need for rank estimation hewdstven

a full Cholesky decomposition is much faster than a
partial or complete SVD. To give an example of the
increase in speed, we provide some numerical sesult
computed in Matlab.

For a given matrix size, a symmetric positive défin
matrix is generated. Its SVD is computed using the
default in-built Matlab routine. The partial SVDa&re
computed using Lansvd [11]. For the partial SVDegas
‘k%’ means that SVD corresponds to the top k% & th
top singular values. The Cholesky decomposition is
computed using the default Matlab in-built routirker



each matrix size, 100 such matrices were genewated
the different decompositions were carried out otheaf
them. The average reconstruction times are reparted
Table 1.

Table 1. Decomposition Time in Seconds

MATRIX SVD (Full) | Lansvd Lansvd Cholesky
Size (1%) (10%)

1000X1000| 0.53 0.25 1.31 0.02
2500X2500| 9.83 2.00 17.82 0.25
5000X5000| 77.92 18.01 138.47 1.59

It is easy to note that Cholesky decompositiont iast
more an order of magnitude faster than SVD. No#t, th
these decompositions need to be computed AT EVERY
ITERATION in their corresponding algorithms.

In a succinct fashion, the pseudo-code for our
proposed algorithm is expressed as follows:

2
Fro

Initialize: X = mxin||Y - AX)|
In each iteration (k):
P
Cholesky Decomposition |-+i p(XTX)?2 "=R'R
a

tep1.R'Z=B
step 2.RX =Z

SolveX -

The complexity for solvingK is only 2n® (nxn being
the size ofX) by backward and forward substitutions. The

P
complexity for computingl +i p(X"X)2 tis governed
a

by the matrix-matrix product which requira’flops. We
already mentioned that the complexity of the CHaoles
decomposition i4/3n®. Thus the total complexity of each
iteration of our algorithm is2n®+4/3n°, which is
considerably less than the previous SVD based szgov
techniques. A low-rank matrix recovery algorithntisuas
[3] requires an SVD, a shrinkage and a matrix-mmatri
product in every iteration. Therefore the totaltdesi3n®
(for SVD assuming a square matrix)n¥ (matrix-matrix
product); we can ignore the shrinkage operatioit igsof
linear complexity. Other algorithms [9, 10] haven#ar
costs per iterations. Thus it is easy to note (it
computational cost per iteration for our algorittermuch
less when compared to competing algorithms.

3.DYNAMIC MRI RECONSTRUCTION

In Magnetic Resonance Imaging (MRI), the data
acquisition model is expressed as:
b=Fx+n (14)

Herex is the underlying imagdy is the acquired K-space
(Fourier frequency) data anfé is the Fourier mapping
from the spatial domain to the K-space. The ngiss
assumed Gaussian.

This is a classic inverse problem. When the K-space
is fully sampled on a uniform Cartesian grid, the

reconstruction / inversion is trivial (requires gppg an
inverse FFT onb). However, such uniform Cartesian
sampling is time consuming. In order to acceletat
scans, the K-space is partially sampled; but thikesn the
inverse problem (9) under-determined and
reconstruction challenging.

In dynamic MRI, the data is acquired for each time
frame. Thus the data acquisition is expressed as:

b =Fx +n, t=1..T
Considering all the frames,
succinctly in the following form:
vec(B) = F vec(X)+n (16)
WhereB is a Casorati matrix formed by stacking thi's

as columnsX is a Casorati matrix formed by stacking the
X's as columns andF is a block diagonal matrix with
correspondingr’s.

In [12, 13] it is argued that the matriX is rank-
deficient. This is because, the MRI frames are taalty
correlated and hence the columns &f are not
independent. This rank deficiency can be exploited
order to recoverX from (16). In [12, 13] a matrix
factorization based technique [14] was used for
recovering the low-rank solution. However in pripei
other low-rank matrix recovery techniques like Stdap
norm minimization can be employed as well.

4. EXPERIMENTAL EVALUATION
4.1. Experimentson Synthetic Data

the

(15)
this can be expressed

To test the performance of our algorithm, we coragat
with the singular value shrinkage (SVS) techniqdg [
We chose SVS because it has been shown to outerfor
other methods like SVT and FPC both in terms okdpe
and accuracy [4]. Besides, both the proposed akgori
and SVS solve the same Schatten-p norm minimization
problem while SVT and FPC can only solve the nuclea
norm minimization problem.

For this work, we have takgm= 1 and1 = 0.1. We
are interested in the speed of the algorithmsesb this
we took three examples of Matrix Completion —

Example 1. Matrix Size — 1000 X 1000, rank — 10

Example 2. Matrix Size — 1000 X 1000, rank — 100

Example 3. Matrix Size — 2500 X 2500, rank — 25
For all three examples, the sub-sampling ratio fixe
at 25%; i.e. only 25% of the randomly selectediestn
the matrix are observed.

For both algorithms, the exit criterion is the saie
the algorithm stops when it reaches a prescribedben
of iterations (50) or it stops when the objectivadtion
does not change significantly (toleranca@).

The experiments were carried using Matlab 2012a
running on an Intel core i5 CPU with 4GB RAM. For
each of the above examples, the matrix was gemeif@
times, and the average reconstruction time wasrtego
The recovery is considered successful, if the aeera



normalized mean squared error (NMSE) is less ttéh
The consolidated results are shown in Table 2.

Table 2. Recovery Results in seconds

of 2 (50% sampling) and 4 (25% sampling) were used.
The results are tabulated in the following Table 3.

Table 3. Reconstruction Error (NMSE)

Example SVs Propose Successful Method IRPF Propose

#1 31.25 2.82 Yes 25% 50% 25% 50%

#2 550.45 54.78 No 2D DCE 1 0.19 0.27 0.15 0.21

#3 221.87 18.91 Yes 2DDCE 1 0.18 0.27 0.15 0.20
3D DCE 0.17 0.25 0.13 0.19

We find that our proposed method delivers the
promised speed-up. For Examplel and Example3, when
the algorithms actually converge to the desireditsmt,
we notice that the proposed algorithm convergeefg
less than 50 iterations, but SVS takes all 50 fima),
that is why the improvements in speed is more Sigamit
compared to SVS. For Example2, when the solutiesdo
not converge, our algorithm runs for all the 5@&t®ns
and hence speed up is only about an order of maigmit

4.2. Experiments on Dynamic MRI Reconstruction

We apply the proposed matrix recovery technique for
dynamic MRI reconstruction and compare it with the
reconstruction algorithm [12] which uses the IRPF
(Incremental Rank Power Factorization). For our
experiments, the value of p (of Schatten-p nornmRet
fixed at 1 and. is kept at 0.2.

DCE-MRI experiments were performed on female
tumour bearing non-obese diabetic/severe combined
immune-deficient mice. All animal experimental
procedures were carried out in compliance with the
guidelines of the Canadian Council for Animal Carel
were approved by the institutional Animal Care
Committee. Tumour xenografts were implanted
subcutaneously on the lower back region.

All images were acquired on a 7T/30 cm bore MRI
scanner (Bruker, Germany). Mice were anaesthetiatd
isofluorane, temperature and respiration rate were
monitored throughout the experiment. FLASH was used
to acquire fully sampled 2D DCE-MRI data from the
implanted tumour with 42.624 x 19.000 mm field aw,

128 x 64 matrix size TR/TE = 35/2.75 ms, 40° fimgle.
1200 repetitions were performed at 2.24 s per itpet
The 2D DCEL1 dataset was acquired from a mouserizgari
HCT-116 tumour (human colorectral carcinoma). The
animal was administered /g Gadovist (Leverkusen,
Germany) at 60 mM. The 2D DCE2 dataset was acquired
from a mouse bearing MDA435/LCC6 tumour (human
breast cancer). The animal was administereqiLfg
hyperbranched polyglycerol-Gd (synthesized in theltly

of Pharmaceutical Sciences at the University oti®ri
Columbia) at 0.2 mM. 3D DCE-MRI data was also
acquired using a FLASH sequence, with 38.4 x 21.6 x
24.0 mm field of view, 128 x 72 x 24 matrix siz&R/TE

= 9/2.66 ms, 25° flip angle. 170 repetitions were
performed at 15.55 s per repetition.

Under-sampling of the K-space was simulated using
Variable Density random sampling. Acceleration dast

The numerical and qualitative results show that our
proposed method vyields considerable construction
improvement over the existing technique.

For qualitative evaluation we show the ground-truth
images, reconstructed images and difference (betwee
ground-truth and reconstructed) in Fig. 1. Visual
evaluation shows that our method is consideralesar
than IRPF reconstruction. For example in Fig. lg th
lower portion of the frames for 2D DCE1 and 2D DCE2
sequence show discernible reconstruction artifdots
IRPF; these artifacts are almost absent in our geep
technique. A better understanding of reconstruction
accuracy can be seen in the difference imagesei®iite
images from IRPF are considerably brighter tharsé¢hof
our proposed method. This means that the disparity
between the original and the reconstructed images i
higher for IRPF as compared to our offline method.

5. CONCLUSION

This work presents a solution to the Schatte@gp£1)
norm minimization problem. Direct minimization dfi$
norm leads to an algorithm that requires computng
singular value decomposition (SVD) at each iterafi4).
Computing the SVD is computationally complex; asd i
the main computational bottleneck for all low-ranftrix
recovery algorithms [4, 8, 9]. In this work we pose an
alternate technique to address the limitationgpetd. We
replace the Schatten-p norm by its equivalent Ky-Fa
norm. The algorithm is derived in a way that prdels
computing the SVD, rather the Cholesky decompasitio
which is computationally much cheaper than SVD, is
used. The other steps of our algorithm require &ira
matrix product and solving of two triangular system
both of which can be computed efficiently. We shinat
our algorithm is about an order of magnitude fathan
[4] and does not compromise the accuracy.

We apply our new algorithm on the problem of
dynamic MRI reconstruction [12]. It has been shdiat
when dynamic MRI frames are stacked as columns of a
Casorati matrix, the resulting matrix is low-rankce the
frames are temporally correlated. This allows &avery
of the frames using low-rank recovery techniquee W
show that our proposed algorithm vyields signifitant
better results than the previous approach.
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