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ABSTRACT 
 
This study proposes a new algorithm for recovering low-
rank matrices from their under-sampled projections. Such 
algorithms are traditionally based on the Schatten-p 
(0<p≤1) norm minimization. The minimization problem is 
solved directly, requiring the computing of a singular 
value decomposition (SVD) at each iteration. This is time 
consuming and greatly limits the speed of the algorithms 
and its applicability to real life problems. To overcome 
this problem, we replace the Schatten-p norm by its 
equivalent Ky-Fan norm. For minimizing the said norm, 
we derive an algorithm that does not require computing 
SVD’s. Instead, it computes a Cholesky decomposition – 
which requires many less computations than SVD. Our 
method yields an order of magnitude improvement in 
speed over existing techniques. We apply our proposed 
algorithm on the dynamic MRI reconstruction problem 
and obtain significant improvement in computational 
speed over the existing technique. 
 
Index Terms— Matrix completion, dynamic MRI. 

1. INTRODUCTION 

The problem of recovering a low-rank matrix from its 
under-sampled projections arises in many areas in signal 
processing and machine learning. It is a typical inverse 
problem: 
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where y is the measurement, X is the signal to be 
reconstructed – assumed to be of low-rank and A is the 
mapping from a higher dimensional space of n n×

� to a 
lower dimensional space of m� . 

The conventional approach to solve (1) uses 
factorization; the matrix X is representedas X=UV where 
U and V are low-rank matrices. The problem is solved via: 
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Unfortunately, this is a bilinear problem and naturally 
non-convex. This is usually solved via the method of 
alternating least squares. At every iteration, U is solved 
assuming V is fixed and vice versa. This technique is 
simple to implement but is not optimal. Also one needs to 
know the rank of X, which is unknown for most practical 

problems. But the main issue with this approach is that the 
problem is non-convex, thus there are no convergence 
guarantees. It is often observed that the objective function 
decreases initially but keeps on increasing after a while. 

Ideally, searching for the minimum rank solution 
requires solving the following optimization problem: 
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where the noise parameter ε is dependent on the variance 
of η and is assumed to be known. 
Solving this rank minimization problem is NP hard and 
henceforth not practical. Theoretical studies in applied 
mathematics [1, 2] have shown that it is possible to 
guarantee the recovery of the exact solution by relaxing 
the NP hard rank minimization by its closest convex 
surrogate the nuclear norm minimization: 
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where the nuclear norm 
*

X is defined as the sum of  the 

singular values of X. This is a convex problem that can be 
solved by semi-definite programming. However more 
efficient algorithms exist. 

Taking cues from non-convex compressed sensing, it 
has been further observed that instead of employing the 
convex nuclear norm, better recovery can be achieved 
using the non-convex Schatten-p norm (0<p<1) [3-5]: 
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The Schatten-p norm 
Sp

X is defined as the lp-norm of 

the singular values of X. 
The price to be paid for applying the theoretically 

sound solution (4)-(5) instead of the factorization based 
approach (2) is the speed. Schatten-p norm minimization 
problems however require computing the singular value 
decomposition (SVD) of the matrix at every iteration; this 
is computationally complex and is the main source of 
delay. Our aim is to solve the same Schatten-p norm 
minimization problem, but without computing the SVD at 
each iteration. We propose to replace the Schatten-p norm 
by its equivalent Ky-Fan norm and we derive an 
algorithm for its minimization. The Ky-Fan norm 
minimization does not require computing SVDs. It relies 
on the Cholesky Decomposition, which is much cheaper 
to compute. This naturally speeds up the algorithm. 



Low rank matrix recovery has several applications. 
An important problem is dynamic MRI reconstruction. 
Casorati matrix formed by stacking the dynamic MRI 
frames as columns is low-rank owing to the temporal 
correlation between frames. The problem is to recover this 
low-rank matrix given the under-sampled Fourier 
frequency data of each frame. We apply the proposed 
matrix recovery algorithm for the said problem. 

 In the paper, the matrix recovery algorithm is 
proposed in section 2. Its application to the dynamic MRI 
application is described in section 3. The results are 
examined in section 4 and the conclusions are presented 
in section 5. 

2. MATRIX RECOVERY ALGORITHM 

In a low-rank matrix recovery problem, we are required to 
solve (5). However solving the constrained problem 
directly is difficult. Therefore we propose to solve the 
following  problem instead: 
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The problems (5) and (6) are the same for the proper 
choice of λ and ε. In this work, we assume λ is known. 
Since A(.) is a linear function, it is possible to write (6) in 
the following matrix-vector notation: 
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Here x=vec(X) and y=vec(Y). 
Following the Majorization-Minimization approach [6, 7], 
the above form (7) can be expressed at each iteration (k) 
in the following fashion: 
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Here α is slightly higher than the maximum eigenvalue of 
ATA in order to ensure convergence. 
Reshaping the vectors b and x to their matrix forms B and 
X respectively, (8) is expressed as: 
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There exists a direct solution to this problem [4]; 
however this requires computing the singular value 
decomposition (SVD) of B at each iteration. Computing 
SVD’s is time consuming and is the main computational 
bottleneck for all low-rank matrix recovery algorithms. 
The computational complexity for SVD is 2mn2+11n3 [8], 
where m and n are the dimensions of the matrix. Almost 
all efficient algorithms for SVD based low-rank matrix 
recovery problems exploit the fact that the matrix to be 
recovered is low rank and hence computing the full SVD 
is not necessary, computing the partial SVD using 
LAPACK routines slightly improves the computational 
cost. However, in order to compute the partial SVD, one 

needs to specify the number of singular values to be 
computed, i.e. one needs to have an estimate of the rank 
of the matrix to be recovered. This rank estimation is a 
heuristic step that either yields poor reconstruction results 
like Singular Value Thresholding (SVT) [9] or is 
markedly slow like Fixed Point Continuation [10].  

In this work we aim to speed up low-rank matrix 
recovery techniques by about an order of magnitude 
compared to previous SVD based methods. To reach that 
goal, we replace the Schatten-p norm in (9) by its 
equivalent Ky-Fan norm [3], 
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Taking the derivative of g(X) and equating it to zero (the 
intermediate steps are easy to compute; it just requires 
applying the chain rule for multivariate calculus): 
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Re-arranging (11) as: 
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the term inside the brackets 
1
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definite matrix which is easy to invert using the Cholesky 

decomposition:
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algorithm is iterative, the term TX X is computed from 
the previous iteration. Using the Cholesky decomposition, 
X becomes easy to solve from (7) in two steps: 
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Since R is a triangular matrix, X can be solved very fast. 
The Cholesky decomposition is a computationally 

demanding operation in our algorithm. However the cost 
of computing the Cholesky decomposition is only 1/3n3 

[8]; this is significantly less compared to the cost of 

computing an SVD. Since 
1
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rank, there is no need for rank estimation heuristics; even 
a full Cholesky decomposition is much faster than a 
partial or complete SVD. To give an example of the 
increase in speed, we provide some numerical results 
computed in Matlab. 

For a given matrix size, a symmetric positive definite 
matrix is generated. Its SVD is computed using the 
default in-built Matlab routine. The partial SVD’s are 
computed using Lansvd [11]. For the partial SVD case, 
‘k%’ means that SVD corresponds to the top k% of the 
top singular values. The Cholesky decomposition is 
computed using the default Matlab in-built routine. For 



each matrix size, 100 such matrices were generated and 
the different decompositions were carried out on each of 
them. The average reconstruction times are reported in 
Table 1. 

Table 1. Decomposition Time in Seconds 
MATRIX 
Size 

SVD (Full) Lansvd 
(1%) 

Lansvd 
(10%) 

Cholesky 

1000X1000 0.53 0.25 1.31 0.02 
2500X2500 9.83 2.00 17.82 0.25 
5000X5000 77.92 18.01 138.47 1.59 

It is easy to note that Cholesky decomposition is at least 
more an order of magnitude faster than SVD. Note that, 
these decompositions need to be computed AT EVERY 
ITERATION in their corresponding algorithms. 

In a succinct fashion, the pseudo-code for our 
proposed algorithm is expressed as follows: 

Initialize: 
2
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In each iteration (k): 

Cholesky Decomposition - 
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Solve X -
 1. 

 2. 
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The complexity for solving X is only 2n2 (nxn being 

the size of X) by backward and forward substitutions. The 

complexity for computing 
1
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by the matrix-matrix product which requires n3 flops. We 
already mentioned that the complexity of the Cholesky 
decomposition is 1/3n3. Thus the total complexity of each 
iteration of our algorithm is 2n2+4/3n3, which is 
considerably less than the previous SVD based recovery 
techniques. A low-rank matrix recovery algorithm such as 
[3] requires an SVD, a shrinkage and a matrix-matrix 
product in every iteration. Therefore the total cost is 13n3 
(for SVD assuming a square matrix) + n3 (matrix-matrix 
product); we can ignore the shrinkage operation as it is of 
linear complexity. Other algorithms [9, 10] have similar 
costs per iterations. Thus it is easy to note that the 
computational cost per iteration for our algorithm is much 
less when compared to competing algorithms. 

3. DYNAMIC MRI RECONSTRUCTION 

In Magnetic Resonance Imaging (MRI), the data 
acquisition model is expressed as: 
b Fx η= +      (14) 

Here x is the underlying image, b is the acquired K-space 
(Fourier frequency) data and F is the Fourier mapping 
from the spatial domain to the K-space. The noise η is 
assumed Gaussian.  

This is a classic inverse problem. When the K-space 
is fully sampled on a uniform Cartesian grid, the 

reconstruction / inversion is trivial (requires applying an 
inverse FFT on b). However, such uniform Cartesian 
sampling is time consuming. In order to accelerate the 
scans, the K-space is partially sampled; but this makes the 
inverse problem (9) under-determined and the 
reconstruction challenging. 

In dynamic MRI, the data is acquired for each time 
frame. Thus the data acquisition is expressed as: 

,  t=1...Tt t tb F x η= +     (15) 

Considering all the frames, this can be expressed 
succinctly in the following form: 

( )  ( )vec B F vec X η= +     (16) 

Where B is a Casorati matrix formed by stacking the bt’s 
as columns, X is a Casorati matrix formed by stacking the 
xt’s as columns and F is a block diagonal matrix with 
corresponding Ft’s. 

In [12, 13] it is argued that the matrix X is rank-
deficient. This is because, the MRI frames are temporally 
correlated and hence the columns of X are not 
independent. This rank deficiency can be exploited in 
order to recover X from (16). In [12, 13] a matrix 
factorization based technique [14] was used for 
recovering the low-rank solution. However in principle 
other low-rank matrix recovery techniques like Schatten-p 
norm minimization can be employed as well. 

4. EXPERIMENTAL EVALUATION 

4.1. Experiments on Synthetic Data 

To test the performance of our algorithm, we compared it 
with the singular value shrinkage (SVS) technique [4]. 
We chose SVS because it has been shown to outperform 
other methods like SVT and FPC both in terms of speed 
and accuracy [4]. Besides, both the proposed algorithm 
and SVS solve the same Schatten-p norm minimization 
problem while SVT and FPC can only solve the nuclear 
norm minimization problem.  

For this work, we have taken p = 1 and λ = 0.1. We 
are interested in the speed of the algorithms; to test this 
we took three examples of Matrix Completion – 

Example 1. Matrix Size – 1000 X 1000, rank – 10 
Example 2. Matrix Size – 1000 X 1000, rank – 100 
Example 3. Matrix Size – 2500 X 2500, rank – 25 

For all three examples, the sub-sampling ratio was fixed 
at 25%; i.e. only 25% of the randomly selected entries in 
the matrix are observed. 

For both algorithms, the exit criterion is the same, i.e. 
the algorithm stops when it reaches a prescribed number 
of iterations (50) or it stops when the objective function 
does not change significantly (tolerance is 10-6). 

The experiments were carried using Matlab 2012a 
running on an Intel core i5 CPU with 4GB RAM. For 
each of the above examples, the matrix was generated 100 
times, and the average reconstruction time was reported 
The recovery is considered successful, if the average 



normalized mean squared error (NMSE) is less than 10-3. 
The consolidated results are shown in Table 2. 

Table 2. Recovery Results in seconds 
Example SVS Proposed Successful? 
#1 31.25 2.82 Yes 
#2 550.45 54.78 No 
#3 221.87 18.91 Yes 

We find that our proposed method delivers the 
promised speed-up. For Example1 and Example3, when 
the algorithms actually converge to the desired solution, 
we notice that the proposed algorithm converges faster (in 
less than 50 iterations, but SVS takes all 50 iterations), 
that is why the improvements in speed is more significant 
compared to SVS. For Example2, when the solution does 
not converge, our algorithm runs for all the 50 iterations 
and hence speed up is only about an order of magnitude. 

4.2. Experiments on Dynamic MRI Reconstruction 

We apply the proposed matrix recovery technique for 
dynamic MRI reconstruction and compare it with the 
reconstruction algorithm [12] which uses the IRPF 
(Incremental Rank Power Factorization). For our 
experiments, the value of p (of Schatten-p norm) is kept 
fixed at 1 and λ is kept at 0.2. 

DCE-MRI experiments were performed on female 
tumour bearing non-obese diabetic/severe combined 
immune-deficient mice. All animal experimental 
procedures were carried out in compliance with the 
guidelines of the Canadian Council for Animal Care and 
were approved by the institutional Animal Care 
Committee. Tumour xenografts were implanted 
subcutaneously on the lower back region. 

All images were acquired on a 7T/30 cm bore MRI 
scanner (Bruker, Germany). Mice were anaesthetized with 
isofluorane, temperature and respiration rate were 
monitored throughout the experiment. FLASH was used 
to acquire fully sampled 2D DCE-MRI data from the 
implanted tumour with 42.624 × 19.000 mm field of view, 
128 × 64 matrix size  TR/TE = 35/2.75 ms, 40° flip angle. 
1200 repetitions were performed at 2.24 s per repetition. 
The 2D DCE1 dataset was acquired from a mouse bearing 
HCT-116 tumour (human colorectral carcinoma). The 
animal was administered 5 μL/g  Gadovist® (Leverkusen, 
Germany) at 60 mM. The 2D DCE2 dataset was acquired 
from a mouse bearing MDA435/LCC6 tumour (human 
breast cancer). The animal was administered 6 μL/g 
hyperbranched polyglycerol-Gd (synthesized in the Faclty 
of Pharmaceutical Sciences at the University of British 
Columbia)  at 0.2 mM. 3D DCE-MRI data was also 
acquired using a FLASH sequence, with 38.4 × 21.6 × 
24.0 mm field of view, 128 × 72 × 24 matrix size, TR/TE 
= 9/2.66 ms, 25° flip angle. 170 repetitions were 
performed at 15.55 s per repetition. 

Under-sampling of the K-space was simulated using 
Variable Density random sampling. Acceleration factors 

of 2 (50% sampling) and 4 (25% sampling) were used. 
The results are tabulated in the following Table 3. 

Table 3. Reconstruction Error (NMSE) 
Method IRPF Proposed 

25% 50% 25% 50% 
2D DCE 1 0.19 0.27 0.15 0.21 
2D DCE 1 0.18 0.27 0.15 0.20 
3D DCE 0.17 0.25 0.13 0.19 

The numerical and qualitative results show that our 
proposed method yields considerable construction 
improvement over the existing technique.  

For qualitative evaluation we show the ground-truth 
images, reconstructed images and difference (between 
ground-truth and reconstructed) in Fig. 1. Visual 
evaluation shows that our method is considerably superior 
than IRPF reconstruction. For example in Fig. 1, the 
lower portion of the frames for 2D DCE1 and 2D DCE2 
sequence show discernible reconstruction artifacts for 
IRPF; these artifacts are almost absent in our proposed 
technique. A better understanding of reconstruction 
accuracy can be seen in the difference images. Difference 
images from IRPF are considerably brighter than those of 
our proposed method. This means that the disparity 
between the original and the reconstructed images is 
higher for IRPF as compared to our offline method. 

5. CONCLUSION 

This work presents a solution to the Schatten-p (0<p≤1) 
norm minimization problem. Direct minimization of this 
norm leads to an algorithm that requires computing a 
singular value decomposition (SVD) at each iteration [4]. 
Computing the SVD is computationally complex; and is 
the main computational bottleneck for all low-rank matrix 
recovery algorithms [4, 8, 9]. In this work we propose an 
alternate technique to address the limitations of speed. We 
replace the Schatten-p norm by its equivalent Ky-Fan 
norm. The algorithm is derived in a way that precludes 
computing the SVD, rather the Cholesky decomposition, 
which is computationally much cheaper than SVD, is 
used. The other steps of our algorithm require a matrix-
matrix product and solving of two triangular systems – 
both of which can be computed efficiently. We show that 
our algorithm is about an order of magnitude faster than 
[4] and does not compromise the accuracy. 

We apply our new algorithm on the problem of 
dynamic MRI reconstruction [12]. It has been shown that 
when dynamic MRI frames are stacked as columns of a 
Casorati matrix, the resulting matrix is low-rank since the 
frames are temporally correlated. This allows for recovery 
of the frames using low-rank recovery techniques. We 
show that our proposed algorithm yields significantly 
better results than the previous approach. 

 



     
505th time frame from 2D DCE1 

     
958th time frame from 2D DCE2 

     
20th slice of 59th frame from 3D DCE 

     
12th Frame of 98th slice from 3D DCE 

Fig. 1. Reconstructed and Difference Images Images. From Left to Right: Ground-truth, IRPF Reconstruction, IRPF Difference Image, 
Proposed Reconstruction and Proposed Difference Image.  
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