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In blind compressed sensing (BCS), both the sparsifying dictionary and the sparse coefficients are estimated
simultaneouslyduring signal recovery. A recent study adopted the BCS framework for recoveringdynamicMRI
sequences from under-sampled K-space measurements; the results were promising. Previous works in
dynamic MRI reconstruction showed that, recovery accuracy can be improved by incorporating low-rank
penalties into the standard compressed sensing (CS) optimization framework. Ourwork ismotivated by these
studies, and we improve upon the basic BCS framework by incorporating low-rank penalties into the
optimization problem. The resulting optimization problemhas not been solvedbefore; hencewe derive a Split
Bregman type technique to solve the same. Experiments were carried out on real dynamic contrast enhanced
MRI sequences. Results show that,with our proposed improvement, the reconstruction accuracy is better than
BCS and other state-of-the-art dynamic MRI recovery algorithms.
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1. Introduction

In this work, we address the problem of reconstructing a dynamic
MRI sequence from its under-sampled K-space frames. The data
acquisition is expressed as follows:

yt ¼ Rt Fxt þ η; η∼N 0;σ2
� �

ð1Þ

where xt denotes the tth frame to be reconstructed, F is the Fourier
transform, Rt is the K-space sampling mask for the said instant, yt is
the acquired K-space samples and η is the noise.

Assuming that there are T such frames, (1) can be compactly
represented as:

vec Yð Þ ¼ Φvec Xð Þ þ η ð2Þ

where Y = [y1| … |yT], X = [x1| … |xT] and Φ = BlockDiag(RtF).
The problem is to recover, X given Y and Φ. Usually compressed

sensing (CS) [1–3] based techniques are employed to recover them. CS
exploits the spatio-temporal redundancy of the sequence X in order to
recover it. The spatio-temporal redundancy leads to sparsity in a
transform domain, and CS techniques utilize this sparsity for recovery.

There is an alternate reconstruction approach that departs from
standard CS techniques. The dynamic MRI sequence X is low-rank.
This is because the frames are temporally correlated, and hence the
columns of X are not independent. Based on this argument, it was
shown [4] that low-rank matrix recovery techniques can be
employed to recover the dynamic MRI sequence. Unfortunately,
this method cannot compete with CS based reconstruction tech-
niques in terms of accuracy.

Some recent studies proposed combining CS based ap-
proaches with low-rank recovery techniques [5–7]. These papers
showed that, such combined approaches yield better results
than using sparsity based techniques or low-rank recovery
techniques individually.

Recently blind compressed sensing (BCS) formulation was
proposed [8]. CS assumes that the sparsifying basis is known a
priori. BCS argues that, knowing the sparsifying basis is not
necessary; it is possible to estimate the basis and the sparse
coefficient simultaneously. Since the sparsifying basis is unknown;
hence the name 'Blind'. It was shown in [9] that BCS can be used for
dynamic MRI reconstruction.

The BCS technique do not explicitly incorporate the fact that the
MRI sequence is low-rank; as mentioned before, exploiting this
property had shown better reconstruction previously [5–7]. In this
work, we propose to incorporate the low-rank property in order to
improve the BCS recovery results.

The rest of the work is organized into several sections. Previous
work in dynamic MRI reconstruction will be briefly discussed in the
following section. Our proposed methodology is described in
Section 3. The experimental results will be in Section 4. Finally, the
conclusions of this work will be discussed in Section 5.
mpressed sensing with low-rank constraints for
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2. Review of literature

The most general representation for the dynamic MRI recon-
struction problem is expressed in (2). Compressed sensing (CS)
based techniques exploit the spatio-temporal redundancy of the
sequence for reconstruction. It is well known that MR images
(columns of X) are sparse in wavelet domain. Since the sequence is
temporally correlated, the variation along the rows of X can be
assumed to be smooth and hence is likely to have a compact
representation in the Fourier domain. In [1,2] the following
formulation was proposed for recovering the sequence:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λ W⊗F1Dvec Xð Þk k1 ð3Þ

Here the W is the wavelet transform to sparsify along the spatial
direction, and F1D is the one dimensional Fourier transform to
sparsity along the temporal direction. The Kronecker product is a
convenient notation for this expression.

In [3] it was shown that one can also recover the sequence by only
accounting for the temporal difference as follows:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λTVt Xð Þ ð4Þ

where TVt = ∑ ‖∇tXt‖1 and∇t denotes the temporal differentiation
for the ith pixel.

Here the argument is that since the frames are temporally
correlated, the difference between the frames is sparse, and this
sparsity can be exploited for recovery.

Departing from CS based techniques, it was shown by [4] that, the
matrix X can also be represented as a low-rankmatrix. The argument
is simple—since the frames are correlated, the columns of X are not
linearly independent. In [4] a matrix factorization based technique
was used for solving the recovery problem; however other
techniques like nuclear norm minimization can be used as well.

More recent studies [5–7] proposed combining CS with low-rank
matrix recovery. The following optimization problem is used for
reconstructing X:

min
X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 ΨS⊗ΨTvec Xð Þk k1 þ λ2 Xk k� ð5Þ

Here ΨS andΨT are transformed to sparsify along the spatial and
temporal directions. In [5] these are respectively spatial and
temporal finite differencing; in [6,7] they are wavelet and Fourier.
The nuclear norm penalty (‖X‖⁎) enforces a low-rank solution. The
two parameters—λ1 and λ2—balances the relative importance of the
sparsity and the low-rank penalties.

So far, we have been discussing techniques where the sparsifying
transform (wavelet, Fourier, finite differencing etc.) is known. A
recent work [8] showed that instead of using fixed sparsifying basis,
better results can be obtained if a learned basis was employed. Here
dictionary learning techniques were employed to estimate the
sparsifying dictionary from the training data. The learned dictionary
was finally used for actual dynamic MRI reconstruction. They
showed that, such a learned dictionary based reconstruction yields
considerably better results than previous CS based recoverymethods
that used fixed sparsifyng basis.

It should be noted that the priorwork [8] had twophases: training—
where the dictionary is estimated/learned; and testing—where the
learned dictionary is employed for dynamic MRI reconstruction. The
blind compressed sensing (BCS) [9] formulationmarries the twophases
—in BCS, both the empirical sparsifying dictionary and the sparse
coefficients are estimated simultaneously during signal recovery.

In BCS, the signal is assumed to be sparse in an unknown basis, i.e.
X = DZwhere D is the sparsifying basis and Z is the sparse coefficient
Please cite this article as: Majumdar A, Improving synthesis and anal
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set. The BCS formulation for dynamic MRI [10] is as follows:

min
D;Z

vec Yð Þ−Φvec DZð Þk k22 þ λ1 Zk k1 þ λ2 Dk k2F ð6Þ

Obviously this is not a convex problem since the unknowns D
and Z are in a product form (a bilinear problem). However, it has
been shown in [10] that this technique yields better results than
low-rank recovery techniques [4]. However, it is known that simple
low-rank recovery techniques do not yield the best reconstruction
results. Thus an improvement over such a technique do not mean
much; one does not know if BCS can compete with state-of-the-art
techniques which combine sparsity with rank deficiency, e.g. k-t
SLR [5].

The BCS technique we discussed [9,10] are examples of sparse
synthesis prior. A co-sparse analysis prior BCS can also be
formulated [11]. The difference between synthesis and analysis
prior is that the later assumes DX to be co-sparse; D being the
dictionary and X being the signal of interest. The analysis prior BCS
was not used for MRI reconstruction; it was used for image
denoising. If this technique is adopted for dynamic MRI recovery,
the optimization problem would be,

min
D;X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 DXk k1 þ λ2 Dk k2F ð7Þ

In CS based MRI reconstruction, it has been observed repeatedly
that the analysis prior yields better recovery results compared to the
synthesis prior [12,13]. We expect that similar improvements can be
achieved for BCS as well.

3. Exploiting rank-deficiency in BCS

As mentioned before, the analysis prior BCS have not been
applied for dynamic MRI reconstruction. Hence it would be
interesting to see how it performs. However, this may not be a
significant improvement. What is even more interesting is to follow
cue from prior studies [5–7] that combined rank-deficiency with
sparsity based techniques. In this work, we propose to exploit the
low-rank property of the MRI sequence X within the BCS
reconstruction framework. This can be achieved by adding low-
rank penalties to (6) and (7), leading to:

min
D;Z

vec Yð Þ−Φvec DZð Þk k22 þ λ1 Zk k1 þ λ2 Zk k� þ λ3 Dk k2F ð8Þ

min
D;X

vec Yð Þ−Φvec Xð Þk k22 þ λ1 DXk k1 þ λ2 Xk k� þ λ3 Dk k2F ð9Þ

The low-rank penalty on the signal X is obvious for the co-sparse
analysis prior formulation (9); since the MRI sequence is low-rank,
we impose the penalty on X. For the synthesis prior (8), one might
ask, why the low-rank penalty is imposed on Z. This too is simply to
explain—BCS minimizes the Frobenius norm of the dictionary, hence
D cannot be of low-rank; the only possibility is to impose a low-rank
penalty on Z.

These formulations (8) and (9) are not convex, but then none of
the BCS formulations are. Moreover, there are no algorithms to solve
(8) and (9), because such problems have not been encountered
before. In the following sub-section, we propose to derive efficient
algorithms to solve these in the following section.

The reviewer pointed out that usually dynamic MRI sequences
are acquired by multi-coil scanners. It is easy to incorporate the
SENSE framework [14] into our proposed formulation. In SENSE, the
data acquisition from each channel (c) is expressed as:

yc ¼ RFScxþ η ð10Þ
ysis prior blind compressed sensing with low-rank constraints for
oi.org/10.1016/j.mri.2014.08.031
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where Sc is the sensitivity map for the cth coil and yc is the acquired
K-space for the cth coil.

Therefore, if there are C channels in all, the combined acquisition
is expressed as:

y Sð Þ ¼ Exþ η ð11Þ

wherey Sð Þ ¼
y1
…
yC

2
4

3
5andE ¼

RFS1
…

RFSC

2
4

3
5 is called the sensitivity encoding

matrix.
Incorporating this into (1), we can express multi-channel

dynamic MRI acquisition as:

y Sð Þ
t ¼ Etxt þ η ð12Þ

Subsequently we can modify multi-channel data acquisition for
the dynamic MRI sequence as:

vec Yð Þ ¼ Φvec Xð Þ þ η ð13Þ

where Y = [y1(S)| … |yT(S)], X = [x1| … |xT] and Φ = BlockDiag(Et).
From this formulation, one can see how BCS variants (sBCS, aBCS

and our proposed techniques) can be used for recovering the
dynamic MRI sequence acquired by multi-channel scanners.

3.1. Solving analysis and synthesis prior BCS problems with low-
rank penalties

We solve (8) and (9) by Bregman type variable splitting with
alternating directions method of multipliers (ADMM) [15]. We
introduce three proxy variables—P, Q and R for the three penalty
functions respectively. We add terms relaxing the equality
constraints of each quantity and its proxy, and in order to enforce
equality at convergence,we introduce Bregman variables B1, B2 and
B3. The new objective functions for the synthesis and the analysis
prior are:

min
D;Z;P;Q ;R

Y−Φvec DZð Þk k2F þ λ1 Pk k1 þ λ2 Qk k� þ λ3 Rk k2F
þ γ1 P−Z−B1k k2F þ γ2 Q−Z−B2k k2F þ γ3 R−D−B3k k2F

ð14Þ

min
D;X;P;Q ;R

Y−Φvec Xð Þk k2F þ λ1 Pk k1 þ λ2 Qk k� þ λ3 Rk k2F
þ γ1 P−DX−B1k k2F þ γ2 Q−X−B2k k2F þ γ3 R−D−B3k k2F

ð15Þ

First, we outline the algorithm for solving the synthesis prior
problem (14). The said minimization can be split into alternating
minimization of the following sub-problems:

min
D

Y−Φvec DZð Þk k2F þ γ3 R−D−B3k k2F ð16Þ

min
Z

Y−Φvec DZð Þk k2F þ γ1 P−Z−B1k k2F þ γ2 Q−Z−B2k k2F ð17Þ

min
P

λ1 Pk k1 þ γ1 P−Z−B1k k2F ð18Þ

min
Q

λ2 Qk k� þ γ2 Q−Z−B2k k2F ð19Þ

min
R

λ3 Rk k2F þ γ3 R−D−B3k k2F ð20Þ

Subproblems (16), (17) and (20) are simple least squares
problems that can be solved via conjugate gradient (CG). Subprob-
lem (18) is an l1-norm regularized least squares problem. The
standard technique to solve (18) efficiently is via iterative soft
Please cite this article as: Majumdar A, Improving synthesis and anal
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thresholding [16]:

P←Soft Z þ B1;2λ1=γ1ð Þ ð21Þ

where Soft (t, u) = sign(t) max(0, |t| − u).
Subproblem (19) is a least squares problem regularized by a

nuclear norm penalty. This too can be efficiently solved using
singular value shrinkage [17]. Here the same shrinkage operation
(21) is applied on the singular values of the matrix Z + B2, i.e.

USVT ¼ Z þ B2 ð22aÞ

Σ←Soft S;2λ2=γ2ð Þ ð22bÞ

Q ¼ UΣVT ð22cÞ

The final step is to update the Bregman relaxation variables:

B1←P−D−B1 ð23aÞ

B2←Q−S−B2 ð23bÞ

B3←R−S−B3 ð23cÞ

This concludes the algorithm for the synthesis prior problem. The
analysis prior problem can be solved in a similar vein. The problem
(15) can be segregated into simpler sub-problems via alternating
directions:

min
D

γ1 P−DX−B1k k2F þ γ3 R−D−B3k k2F ð24Þ

min
X

Y−Φvec Xð Þk k2F þ γ1 P−DX−B1k k2F þ γ2 Q−X−B2k k2F ð25Þ

min
P

λ1 Pk k1 þ γ1 P−DX−B1k k2F ð26Þ

min
Q

λ2 Qk k� þ γ2 Q−Z−B2k k2F ð27Þ

min
R

λ3 Rk k2F þ γ3 R−D−B3k k2F ð28Þ

The solution for the analysis prior sub-problems (24)–(28)
remains the same as before (16)–(20). One notices that, with our
proposed substitution P = DX, we have converted the analysis prior
to an equivalent synthesis prior sub-problem (26) which can be
solved as before (22).

There are two stopping criterions for the Split Bregman
algorithms. Iterations continue till the objective function converges;
by convergence we mean that the difference between the objective
functions between two successive iterations is very small (10−4).
The other stopping criterion is a limit on the maximum number of
iterations. We have kept it to be 500. The parameters γ1,γ2,γ3 are
internal to the algorithm and have been fixed at 10−3; the Bregman
variables (B1, B2 and B3) are all initialized to Ones'.

4. Experimental evaluation

DCE-MRI experiments were performed on female tumor
bearing non-obese diabetic/severe combined immune-deficient
mice. All animal experimental procedures were carried out in
compliance with the guidelines of the Canadian Council for Animal
Care and were approved by the institutional animal care commit-
tee. Tumor xenografts were implanted subcutaneously on the
lower back region.
ysis prior blind compressed sensing with low-rank constraints for
oi.org/10.1016/j.mri.2014.08.031
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All imageswere acquired on a7 T/30 cmboreMRI scanner (Bruker,
Germany). Mice were anaesthetized with isofluorane, temperature
and respiration rate were monitored throughout the experiment.
FLASH was used to acquire fully sampled 2D DCE-MRI data from the
implanted tumor with 42.624 × 19.000 mm field of view, 128 × 64
matrix size TR/TE = 35/2.75 ms, 40° flip angle. One thousand two
hundred repetitions were performed at 2.24 s per repetition. The 2D
DCE1 dataset was acquired from a mouse bearing HCT-116 tumor
(human colorectral carcinoma). The animal was administered 5 μL/g
Gadovist® (Leverkusen, Germany) at 60 mM. The 2D DCE2 dataset
was acquired from a mouse bearing MDA435/LCC6 tumor (human
breast cancer). The animal was administered 6 μL/g hyperbranched
polyglycerol-Gd (synthesized in the Faculty of Pharmaceutical Sci-
ences at the University of British Columbia) at 0.2 mM.

The ground-truth consists of the fully sampled K-space from
which the images are reconstructed via inverse FFT. For simulating
acceleration of the K-space, we used variable density random
sampling. The acceleration factor was fixed at 2.5, i.e. we sampled
40% of the K-space. The reconstruction was carried out with several
different reconstruction techniques

1. k-t SLR (k-t sparse and low-rank recovery) [5]
2. sBCS (synthesis prior blind compressed sensing) [10]
3. aBCS (analysis prior blind compressed sensing) [11]
4. Proposed sBCS LR (synthesis prior BCS with low-rank penalty)
5. Proposed aBCS LR (analysis prior BCS with low-rank penalty)

The implementation for k-t SLR and sBCS are available from the
author's website [18]. For aBCS, we implemented the algorithm
proposed by the author's of the paper. We found that this is not a
very accurate or efficient algorithm—this is reflected in the results.
The quantitative measure for reconstruction accuracy is normalized
mean squared error (NMSE). This is shown in Table 1. The average
NMSE and the standard deviation for the entire sequence are shown.

For the BCS techniques, one needs to initialize the dictionary D; we
initialized it to a DCT dictionary for the synthesis prior and a complex
dualtree wavelet dictionary for the analysis prior. For aBCS and sBCS,
the dictionary was initialized randomly; this was proposed in the
corresponding papers [9] and [10]. The previous work on sBCS
experimentally validated that the algorithm is insensitive to the size
of the dictionary as long as it consists of a reasonable number of basis;
they choseadictionary sizeof 45.Ouralgorithmrequires specifying the
values of λ1, λ2 and λ3; these were experimentally determined via the
L-curve method. The L-curve method can only optimally find out the
value of one parameter; for more than one parameter an exhaustive
search is required. In this work we used a sub-optimal strategy based
on the L-curve method. First λ2 and λ3 were fixed to 0's, and λ1 was
found using the L-curve method. Next we find out λ2 by the same
method; herewe fix λ1 to the obtained value and λ3 to 0. Finallywe set
to λ1 and λ2 to their obtained values and find out λ3 by the L-curve
method. This resulted in: λ1 = 10, λ2 = .01 and λ3 = 1. The
parameters for BCS and k-t SLR [5] were chosen based on the
methodology proposed in the corresponding studies.

Generally, the analysis prior is known to yield good results,
compared to the synthesis prior. But here we find that aBCS yields
the worst results; even worse than the synthesis prior BCS. This is an
Table 1
NMSE for various techniques.

Dataset k-t SLR
(mean, std)

sBCS
(mean, std)

aBCS
(mean, std)

sBCS LR
(mean, std)

aBCS LR
(mean, std)

2 D
DCE1

0.13, ±
0.051

0.17, ±
0.110

0.28, ±
0.189

0.11, ±0.04 0.10, ±0.04

2 D
DCE2

0.11, ±
0.047

0.15, ±
0.112

0.25, ±
0.180

0.10, ±0.04 0.09, ±0.03
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anomaly; most likely this is a result of the inefficient aBCS algorithm
proposed in [10] to solve it.

We find that sBCS yields good results but cannot beat k-t SLR.
Introducing the low-rank penalty into the BCS framework improves
the results significantly—our proposed sBCS LR yields is considerably
better than sBCS; it is even slightly better compared to k-t SLR.
However, the best result is obtained from the analysis prior aBCS LR.
The improvement from analysis prior expected and consistent from
prior works [12,13].

The experiments were run on a quadcore i7 processor with 16 GB
of RAM having a ZOTAC NVIDIA GeForce GTX 770 2 GB GDDR5
Graphics Card. As mentioned before the k-t SLR and the sBCS
implementations were available from the author's websites. We
implemented the aBCS, but using the algorithm proposed in [11]. All
of them are sequential algorithms that use the CPU ores. Our
proposed algorithms on the other hand are computationally more
challenging—required to compute singular value decompositions in
every iteration. This is the major computational bottleneck; to
overcome this issue, we used a parallel algorithm for SVD that could
be implemented on the GPU. Also other numerical linear operations
required by our method are offloaded to the GPU. This significantly
enhances the speed of our algorithms. The k-t SLR takes about
50 minutes; the sBCS takes about 300 minutes and the aBCS about
the same. Our proposed sBCS LR takes about 170 minutes to run and
the aBCS takes around 200 minutes. One must keep in mind that
these speeds are only achievable owing to the GPU, if our algorithms
are to be run on CPU's the run-times would be about an order of
magnitude higher.

The quantitative results are shown in the previous table. The
qualitative results are shown in terms of the reconstructed (Fig. 1)
and the difference (ground-truth—reconstructed) images (Fig. 2).
The difference images are contrast enhanced 5 times for visual
clarity. We do not show the results from aBCS reconstruction, since
the results are very poor compared to the rest. We show the results
for 2 randomly chosen frames from the sequence.

It is hard to see any visible difference in reconstruction quality
from the reconstructed images. For the DCE1 dataset, we have
encircled regions where both k-t SLR and sBCS have introduced
spurious reconstruction artifacts; for the DCE2 dataset we have
encircled regions where k-t SLR and sBCS are erroneously missing
certain regions that are present in the ground-truth. The improve-
ment in reconstruction is clearly visible from the difference images
(Fig. 2)—sBCS shows considerable reconstruction error; large
portions of the difference image are white. The reconstruction
error is slightly reduced in the sBCS. Our proposed low-rank penalty
improves the result even further. The difference images are almost
dark. Careful observation shows that the aBCS LR yields slightly
darker (less reconstruction error) difference image compared to
sBCS LR.
5. Conclusion

This work addresses the problem of recovering a dynamic MRI
sequence from its sub-sampled K-space measurements. Compressed
sensing (CS) based techniques exploit the sparsity of the image
sequence in the transform domain for reconstruction. It has been
shown that the dynamic MRI sequence can be recovered by
assuming it to be a low-rank matrix. However, the best results
were achieved by combining sparsity based techniques with low-
rank penalties.

A recent work showed that, instead of assuming sparsity in a
fixed basis, it is possible to learn the sparsifying dictionary from the
data. This formulation leads to the BCS problem. It showed promising
results on dynamic MRI reconstruction.
ysis prior blind compressed sensing with low-rank constraints for
oi.org/10.1016/j.mri.2014.08.031
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Fig. 1. Reconstructed images. Top—2D DCE1, bottom—2D DCE2. Left to right—ground-truth, k-t SLR, sBCS, sBCS LR and aBCS LR.
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The original BCS formulation was constructed using the synthesis
prior. It can alternatively be formulated as a co-sparse analysis prior
as well. In this work, we improve the BCS formulation (both
synthesis and analysis prior) by incorporating low-rank penalty. The
results show better results than state-of-the-art techniques in
dynamic MRI reconstruction.

However, while using BCS techniques for dynamic MRI recon-
struction, one must be careful about the initialization. This is
because, BCS requires solving a bi-linear non-convex optimization
problem which can be stuck in a local minima. In this work, we have
used DCT for initialization (sBCS too proposed DCT for initialization
along with options of random initialization). The idea was that, since
Fig. 2. Difference images. Top—2D DCE1, bottom—2D DCE2. Left to right—ground-truth, k-t SLR, sBCS, sBCS LR and aBCS LR.

Please cite this article as: Majumdar A, Improving synthesis and analysis prior blind compressed sensing with low-rank constraints for
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MR images are known to be sparse in DCT domain, such an
initializationwould yield good results. Also such a fixed initialization
will yield reproducible results. But DCT is not the only choice, one
can also use other known sparsifying basis like wavelet or finite
difference.

In this work, we have experimented with DCEMRI collected from
a single coil scanner. This is because we only have access to data
acquired by single coil MRI scanner. We have shown in detail, how
the same techniques can be easily used with the SENSE framework
for multi-coil scanners. The reviewer posed an interesting question—
if the proposed formulation can be used in the calibration less
multi-coil (CaLM) MRI framework [19,20]. In theory the answer is

http://dx.doi.org/10.1016/j.mri.2014.08.031
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affirmative, but the resulting formulation is not trivial (unlike
SENSE). For each frame, the CaLM framework will formulate a row-
sparse multiple measurement vector (MMV) recovery problem—

coupling this with the BCS formulation is challenging. We would like
to investigate this possibility in the future.
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