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Abstract— The nearest subspace classifier (NSC) assumes 

that the samples of every class lie on a separate subspace and it 

is possible to classify a test sample by computing the distance 

between the test sample and the subspaces. The sparse 

representation based classification (SRC) generalizes the NSC 

– it assumes that the samples of any class can lie on a union of 

subspaces. By calculating the distance between the test sample 

and these subspaces, one can classify the test sample. Both 

NSC and SRC hinge on the assumption that the distance 

between the test sample and correct subspace will be small and 

approximately Normally distributed. Based on this 

assumption,  these studies proposed using an l2-norm measure. 

It is well known that l2-norm is sensitive to outliers (large 

deviations at few locations). In order to make the NSC and 

SRC robust and improve their performance we propose to 

employ the l1-norm based distance measure. Experiments on 

benchmark classification problems, face recognition and 

character recognition show that the proposed method indeed 

improves upon the basic versions of NSC and SRC; in fact our 

proposed robust NSC and robust SRC yield even better results 

than support vector machine and neural network.  

Index Terms— classification, robust estimation, face 

recognition, character recognition. 

I. INTRODUCTION 

Perhaps one of the simplest classifiers is the nearest 

neighbour (NN). Here the distance between a test sample and 

all training samples are calculated and the test sample is 

assigned to the class of the training samples having the 

minimum distance. The nearest neighbour approach is 

generalized to KNN where instead of assigning the test 

sample to the class having the minimum distance, top-K 

minimum distances are considered and the test sample is 

assigned to the class where most of these top K-samples 

belongs to.  

The sparse representation based classification (SRC) [1] 

has enjoyed a large popularity since its inception. Here it is 

assumed that the training samples of a particular class form a 

linear basis for a test sample belonging to that class. The test 

sample is expressed as a linear combination of all training 

samples with the underlying assumption that the 

combination weights will be mostly zeroes (for training 

samples belonging to the incorrect class) and will have non-

zero values only corresponding to the correct class; in short 

the combination weights were supposed to be sparse. A 

sparsity promoting optimization was used to solve for the 

combination weights. A representative sample for each class 

was formed by linearly combining the training samples and 

the corresponding combination weights. The distance 

between the test sample and the representative sample for 

each class was computed; the test sample was assigned to the 

class having the minimum distance.  

Geometrically speaking, somewhere between the NN and 

the SRC lies the nearest subspace classifier (NSC) [2, 3]. 

The NSC assumes that training samples for each class 

belongs to only one subspace. Therefore the classification 

task boils down to the problem of finding the subspace 

nearest to the test sample. At one extreme of NSC lies the 

simple NN classifier where each subspace is spanned by a 

single sample. On the other extreme is the SRC. SRC allows 

the training samples of each class to lie in a union of 

subspaces; the sparsity promoting optimization problem can 

effectively recover solutions lying in such a union of 

subspaces [4]. Thus SRC is a generalization of NSC since it 

allows the training samples to span multiple subspaces.  

One must remember there is no free lunch. SRC achieves 

this generalization at significantly higher computational cost. 

The projection for NSC can be pre-computed (before the test 

sample is available); thus during testing one only needs to 

perform a few (same as the number of classes) matrix vector 

multiplications. The computational complexity is therefore 

O(n3). On the other hand, SRC requires solving a sparse 

optimization problem after the test sample is made available. 

This needs to be solved iteratively; the number of iterations 

is about O(n.5). Every iteration consists of two matrix vector 

products whose complexity is O(n3), therefore the overall 

complexity is O(n3.5). This is significantly larger than the 

complexity of NSC. In spite of computational advantages 

NSC is not very widely used; there are a handful of studies 

on this topic [6-9]. Some theoretical insights into this 

approach is also available [10].  

Both SRC and NSC are basically subspace based 

approaches. In a nutshell, NSC assumes all the samples of a 

class to lie on a subspace whereas SRC allows the samples to 

lie on a union of subpsaces. Both SRC and NSC hinge on the 

assumption that the subspace based model is accurate, 

imperfections if any, are small. Both of them employ a 

Euclidean distance based cost function based on the said 

assumption.  

The Euclidean distance is optimal when the deviations 

are small – approximately Normally distributed; but fail 

when there are large outliers. In statistics there is a large 

body of literature on robust estimation. The Huber function 

[11] has been in use for more than half a century in this 

respect. The Huber function is an approximation of the more 



recent absolute distance based measures (l1-norm). Recent 

studies in robust estimation prefer minimizing the l1-norm 

instead of the Huber function [12]-[14]. The l1-norm does 

not bloat the distance between the estimate and the outliers 

and hence is robust.  

The problem with minimizing the l1-norm is 

computational. However, over the years various techniques 

have been developed. The earliest known method is based on 

Simplex [15]; Iterative Reweighted Least Squares [16] used 

to be another simple yet approximate technique. Other 

approaches include descent based method introduced by [17] 

and Maximum Likelihood approach [18].   

In this work we follow the studies in robust estimation 

and propose robust versions of SRC and NSC. We employ 

an l1-norm instead of the standard Euclidean (l2-norm) 

distance to handle outliers. This leads to a complex 

optimization problem, but yields considerably better results 

than their non-robust counterparts on many benchmark 

classification datasets.  

II. SUBSPACE BASED CLASSIFICATION APPROACHES 

A. Nearest Subspace Classifier 

Nearest Subspace Classifier (NSC) assumes that the 

training samples of each class form a subspace, this is 

depicted in (1).  
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If each of the classes form a subspace, the test sample 

belonging to that class can be represented as a linear 

combination of training samples from that class, i.e. 

, (0, )test c cx X N        (2) 

Here η depicts the modelling error.  

The combination weights can be easily calculated 

assuming the modelling error to be Normally distributed: 
2

2
minc test c cx X


        (3) 

This has an analytic closed form solution (assuming the 

dimensionality is larger than the number of samples – which 

is usually the case): 

 
1

†T T

c c c c test c testX X X x X x


     (4) 

where 
†

cX denotes the Moore-Penrose pseudoinverse.  

To compute the magnitude of the difference vector 

between xtest and its projection onto the subspace spanned by 

Xc, one simply needs to calculate: 

 
22

† †
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( ) test c c test c c testc x X X x I X X x      (5) 

The term within the parenthesis  †

c cI X X can be pre-

computed. Thus during testing one just needs to compute the 

matrix vector product and calculate its norm.  

For classification the distance between the test sample 

and every class is computed and the sample is assigned to the 

class having the minimum error.  

We have discussed the scenario where the dimensionality 

of the training samples is larger than the number of samples 

in the class. This is the usual scenario but not a very 

conducive one. To get good results one would like to have 

larger number of samples that the dimensionality of the 

samples; in that case (2) would be under-determined – there 

are infinitely many solutions. The simplest one is the 

minimum energy solution –  
2 2
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         (6) 

This too has a closed form solution 

 
1

T T

c c c c testX X I X x 


     (7) 

The rest can be computed as before.  

B. Sparse Representation based Classification 

The SRC assumes that the training samples of a 

particular class approximately form a linear basis for a new 

test sample belonging to the same class. One can write the 

aforesaid assumption formally. If xtest is the test sample 

belonging to the kth class then, 

,1 ,1 ,2 ,2 , ,...
k ktest c c c c c n c nx x x x          (8) 

where xc,i are the training samples and η is the approximation 

error. 

In a classification problem, the training samples and their 

class labels are provided. The task is to assign the given test 

sample with the correct class label. This requires finding the 

coefficients αc,i in equation (8). Equation (8) expresses the 

assumption in terms of the training samples of a single class. 

Alternately, it can be expressed in terms of all the training 

samples so that 

testx X        (9) 

where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]
c Cn c c n C C nX x x x x x x  

and 
11,1 1, ,1 , ,1 ,[ ... ... ... ... ... ]

c C

T
n c c n C C n       . 

According to the SRC assumption, only those α’s 

corresponding to the correct class will be non-zeroes. The 

rest are all zeroes. In other words, α will be sparse. 

Therefore, one needs to solve the inverse problem (9) with 

sparsity constraints on the solution. This is formulated as: 
2

12
min testx X x


       (10) 

Once (10) is solved, the representative sample for every 

class is computed: , ,

1

( )  
cn

rep c j c j

j

x c v


 . It is assumed that 

the test sample will look very similar to the representative 

sample of the correct class and will look very similar, hence 

the residual
2

2
( ) ( )test repc x x c   , will be the least for the 

correct class. Therefore once the residual for every class is 

obtained, the test sample is assigned to the class having the 

minimum residual. 

C. Iterative Re-weighted Least Squares 

Solutions to linear inverse problems in the presence of 

Gaussian noise is well known.  



b Az        (11) 

It can be solved by minimizing the least squares. 
2

2
ˆ min

z
z b Az       (12) 

It has a closed form solution (13) –  
1ˆ ( )T Tz A A A b      (13) 

Solution of linear inverse problems where the solution is 

sparse has also been studied widely in signal processing and 

machine learning, especially after the advent of Compressed 

Sensing [19, 20]. Usually it is formulated as follows, 

 
2

2 1
ˆ min

z
z b Az z       (14) 

It (14) does not have a closed form solution but can be 

solved iteratively using proximal methods.  

Studies [11-18] have explored various techniques for 

robust regression, where the error (ε) in (11) is not Normally 

distributed; but is sparse and large in magnitude. In such 

cases, for robust estimation, the mean absolute distance is 

minimized instead –  

1
min

z
b Az      (15) 

One of the methods for solving (15) is based on the iterative 

re-weighted least squares approach (IRLS) [16]. In IRLS, the 

l1-norm is approximated as a weighted l2-norm, i.e. 
2

1 2
( )b Az W b Az       (16) 

 
1/2

( ) ( )where ( )i iW diag b Az


  ; the subscript denotes the 

ith component.  

IRLS, as the name suggests is an iterative technique. It 

starts with the least squares solution. Then it computes the 

diagonal weight matrix based on the z from the first iteration. 

With the newly computed weight matrix it solves (16) in the 

second iteration. This is easy to solve since it is just a least 

squares problem.  

IRLS is a simple algorithm; the heursitic is easy to 

comprehend. But the approximation of l1-norm by a 

weighted l2-norm only holds at convergence. Thus the IRLS 

reaches the actual solution asymptotically, i.e. after a large 

number of iterations.  

In the initial days of Compressed Sensing, IRLS was 

used to solve (14) as well [21]. It recast (14) as, 
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2 2
min

z
b Az Wz      (17) 

As before,  
1/2

( )iW diag z


 .  

The new problem (17) is just a Tikhonov regularized least 

squares problem; it has a straightforward closed form 

solution.  
1ˆ ( )T T Tz A A W W A b      (18) 

Starting with W=Identity in the first iteration, (17) is 

iterated until convergence. The problem remains the same as 

before; the equivalence between l1-norm and l2-norm 

happens only asymptotically [22].  

The IRLS method has also been used to solve the l1-

regularized l1-minimization problem [23] of the form, 

1 1
min

z
b Az z      (19) 

The trick is to replace both the cost function and the penalty 

with the corresponding weighted l2-norms.  

 
2 2

1 2 22
min

z
W b Az W z     (20) 

As before, (20) is solved iteratively by updating W1 and W2. 

The algorithm starts with both of them being Identity. 

Robust Estimation of Subspaces. 

III. ROBUST SUBSPACE BASED CLASSIFICATION 

A. Robust Nearest Subspace Classifier 

The NSC assumes that the subspace based model holds 

well in practice and that the modelling error if any is small 

and approximately Normally distributed (2). This may not be 

the case, especially when there are outliers. In such a case, 

the deviation from the actual model is large but sparse. The 

modelling error follows a more heavy tailed distribution. To 

robustly estimate in such a scenario, the l1-norm is a more 

appropriate choice [12-18]. Thus, in this work we propose to 

estimate the coefficient αc by minimizing the following:  

1
minc test c cx X


       (21) 

As mentioned before [15-18], there are several 

techniques to solve (11). The most practical way being the 

reweighted least squares method [16]. We have discussed it 

in the previous section. The issues associated with such 

heuristics methods has also been discussed. In this work we 

follow a more elegant approach to solve (21) exactly (as 

opposed to approximate solutions like IRLS) based on the 

Augmented Lagrangian formulation.  

For simplicity of notation, we drop the subscripts from 

(21) and introduce a proxy variable: p=x-Xα. The problem 

(21) is therefore expressed as, 

 
1, ,

min  . . 
D Z P

x s t p x X      (22) 

The unconstrained Lagrangian for (22) is, 

 
1

TL p p x X        (23) 

The Lagrangian enforces strict equality; this is not 

required. One only needs to enforce strict equality at 

convergence. Therefore one can relax the equality constraint 

and use the Augmented Lagrangian instead. 
2

1 F
AL p p x X        (24) 

The value of μ controls the relaxation; for small values 

the equality constraint between p and x-Xα is relaxed, and for 

high values it is enforced. One way to achieve this is to start 

with a small value of  μ, solve (24); increase the value, solve 

(24) again and so on.  

A more elegant solution is to introduce a Bregman 

relaxation variable (B) [24, 25] –  
2

1,
min

Fp
p p x X b


        (25) 

Instead of tinkering with μ, one can update b iteratively. 

The update is based on simple gradient descent and hence is 

very efficient. We only need to solve (25) once – for a fixed 

value of μ. Hence solving (25) is much less time consuming 



compared to (24). This approach is the so called Split 

Bregman technique. 

One can segregate (25) into the alternating minimization 

of the following sub-problems: 
2

P1:min
F

p x X b


        (26) 

2

1
P2:min

Fp
p p x X b        (27) 

Solving P1 is straightforward – it is a least squares 

problem and have closed form updates. They can also be 

solved using conjugate gradient based methods. Also P2 has 

a closed form update – soft thresholding [26]. This is given 

by: 

( )max(0, )p signum x X b x X b         

The last step is to update the Bregman relaxation variable. 

b p x X b     

There are two stopping criteria for the Split Bregman 

algorithm. Iterations continue till the objective function 

converges (to a local minima). The other stopping criterion is 

a limit on the maximum number of iterations. We have kept 

it to be 200.  

Once the coefficient for each class is obtained, the 

representative sample for every class is calculated: 

rep c cx X       (28) 

We assume that the representative sample for the correct 

class will be close to the test sample, and hence we compute 

the residue between the representative sample and the test 

sample: 
2

2
( ) ( )test repc x x c   . The test sample, as before, is 

assigned to the class with the minimum residue.  

B. Robust Sparse Representation based Classification 

The original formulation for SRC assumed that the 

modelling error is small and Normally distributed, therefore 

an l2-norm data fidelity term was used (10). As discussed 

before, the Euclidean norm is not robust to outliers. In order 

to have a robust estimation, we propose to replace the l2-

norm by an l1-norm. We formulate a robust solution via: 

11
min testx X x


       (29) 

We follow a similar approach as before. The first step in 

a Split Bregman formulation is to introduce a proxy variable 

– p = xtest - Xα. We add terms relaxing the equality 

constraints of this quantity and its proxy, and in order to 

enforce equality at convergence, we introduce Bregman 

relaxation variables b. The new objective function is: 
2

1 1 2,
min test

x p
p p x X b          (30) 

This allows the problem (30) to be split into an 

alternating minimization of the following subproblems: 
2

1 1 2
: min test

x
P p x X b         (31) 

2

2 1 2
: min test

p
P p p x X b       (32) 

The second subproblem is the same as (27) and has a 

closed form update – one step of soft thresholding. This has 

already been discussed in the previous subsection. The first 

subproblem needs to be solved iteratively using Iterative Soft 

Thresholding Algorithm [16]. The update (at kth iteration): 

 
1 T

k test kz X p x X b
a

       

 1 max 0,
2

k signum z z
a







 
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 
 

where a is the maximum eigenvalue of XTX. 

The final step of the Split Bregman technique is to update the 

relaxation variable: 

testb p x X b        (33) 

There are two stopping criteria for the Split Bregman 

algorithm. Iterations continue till the objective function 

converges (to a local minima). The other stopping criterion is 

a limit on the maximum number of iterations. We have kept 

it to be 200.  

Once the α is obtained, the classification algorithm 

proceeds as before, i.e. we calculate the representative 

sample for each class using (28) and compute the Euclidean 

distance between the representative sample test sample. The 

test sample is assigned to the class having the minimum 

distance.  

IV. EXPERIMENTAL EVALUATION 

A. Results on Benchmark Classification Datasets 

Our experiments were carried out on some well known 

databases from the UCI Machine Learning repository [27]. 

From all the databases around 10% of the samples are 

selected for tuning. The remaining samples are used for 

actual testing. Leave-one-out cross validation is used for 

avoiding variance due to random splits. 

In the Table 1 shows the results for NSC – the original 

NSC (with l2-norm) [2] and our proposed robust NSC (with 

l1-norm). We compare our results against two standard 

classifiers: the nearest neighbor (NN) and the support vector 

machine (SVM).  

TABLE I.  NSC CLASSIFICATION ACCURACY 

Dataset # of 

classes 

Recognition Accuracy (%) 

NSC Robust 

NSC 

NN SVM 

Page Block 5 94.78 95.32 93.34 96.86 

Abalone 29 27.17 26.99 26.67 24.22 

Segmentation 7 96.31 96.88 96.31 95.87 

Yeast 10 57.75 57.75 57.71 54.32 

German Credit 2 69.32 75.40 74.54 75.88 

Tic-Tac-Toe 2 78.89 85.31 83.28 86.72 

Vehicle 4 65.58 74.16 73.86 72.97 

Australian Cr 2 85.94 87.52 86.66 87.15 

Balance Scale 3 93.33 93.33 93.33 85.52 



Ionosphere 2 86.94 91.67 90.32 91.67 

Liver 2 66.68 69.04 69.04 69.04 

Ecoli 8 81.53 81.26 80.98 80.26 

Glass 7 68.43 69.23 68.43 69.23 

Wine 3 85.62 85.51 82.21 74.69 

Iris 3 96.00 96.00 96.00 92.00 

Lymphography 4 85.81 89.32 85.32 88.64 

Hayes Roth 3 40.23 41.01 33.33 34.85 

Satellite 6 80.3 80.3 77.00 89.73 

Haberman 2 40.52 67.28 57.40 65.22 

 

The results show that in most cases our robust NSC 

yields better results than the original formulation. Only for 

the Ecoli and the Wine dataset, the original formulation 

beats us by a small margin. In most cases, our method is 

even better than SVM; only for German Credit, Tic Tac Toe 

and Satellite, does SVM beat our robust NSC. From these 

results, we can conclude that the proposed method improves 

considerably over the original NSC; it also yields better 

results than sophisticated classifiers like SVM and the well 

known NN.  

Next we discuss the results for SRC classification. We 

compare our proposed robust SRC with the original 

formulation (l2-norm) [1]; as benchmark we use the Artificial 

Neural Network (ANN) and SVM. The results are tabulated 

in the following table. 

TABLE II.  SRC CLASSIFICATION ACCURACY 

Dataset # of 

classes 

Recognition Accuracy (%) 

SRC Robust 

SRC 

ANN SVM 

Page Block 5 95.78 96.33 95.32 96.86 

Abalone 29 28.39 28.98 26.49 24.22 

Segmentation 7 97.22 97.22 96.31 95.87 

Yeast 10 57.75 58.00 57.71 54.32 

German Credit 2 77.16 77.43 75.40 75.88 

Tic-Tac-Toe 2 85.31 86.88 85.31 86.72 

Vehicle 4 75.51 75.88 73.46 72.97 

Australian Cr 2 87.64 87.64 86.52 87.15 

Balance Scale 3 94.33 94.33 93.33 85.52 

Ionosphere 2 92.20 94.12 91.67 91.67 

Liver 2 69.04 70.21 69.04 69.04 

Ecoli 8 83.45 82.86 81.26 80.26 

Glass 7 70.19 70.19 69.23 69.23 

Wine 3 95.45 95.45 85.51 74.69 

Iris 3 98.67 98.67 96.00 92.00 

Lymphography 4 86.32 86.81 86.32 88.64 

Hayes Roth 3 43.94 45.38 41.01 34.85 

Satellite 6 83.15 86.22 80.30 89.73 

Haberman 2 73.20 77.78 43.28 65.22 

 

The table shows that except for one case (Ecoli) our 

method always gives at par or better results than the original 

SRC formulation.  Our proposed method always better than 

ANN and is also better than SVM (except for a single 

instance – Page Block). In short, our method yields better 

results than existing algorithms like SRC, ANN and SVM.  

B. Experiments on Face Recognition 

 

 
Fig. 1. Samples from Extended Yale B 

 

We follow the experimental protocol outlined in [1]. The 

experiments are carried on the Extended Yale B Face 

Database. For each subject, we randomly select half of the 

images for training and the other half for testing. Table 3 

contains the results for face recognition. The features are 

selected using the simple Eigenface method. Although more 

sophisticated feature extraction techniques exist, our goal is 

to investigate that given the feature set how different 

classifiers perform. To compare our results with [1], we 

select the same number of Eigenfaces as proposed in [1]. We 

do not compare the results with SVM and ANN, since it has 

already shown in [1] that the SRC outperforms them for face 

recognition problems. 

TABLE III.  FACE RECOGNITION 

Method Number of Eigenfaces 

30 56 120 504 

NSC 86.49 91.71 93.87 96.77 

Robust NSC 86.96 92.05 94.26 97.13 

SRC 89.40 93.37 95.14 97.79 

Robust SRC 91.11 94.56 96.08 98.25 

NN 74.48 81.85 86.08 89.47 

 

The results are as expected. The robust version of NSC 

yields better results than the original NSC formulation; the 

robust version of SRC yields better results than SRC [1]. In 

general, SRC yields better results than NSC. The nearest 

neighbor results are shown in Table 3 as a benchmark. 

C. Experiments on Character Recognition 

The MNIST digit classification task is composed of 

28x28 images of the 10 handwritten digits. There are 60,000 

training images with 10,000 test images in this benchmark. 

The images are scaled to [0,1] and we do not perform any 

other pre-processing. 



Experiments are also carried out on the more challenging 

variations of the MNIST dataset [29]. These were introduced 

as benchmark deep learning datasets. All these datasets have 

10,000 training, 2000 validation  and 50,000 test samples. 

The size of the image as before is 28x28 and the number of 

classes are 10. 

 

Dataset Description 

basic Smaller subset of MNIST. 

basic-rot Smaller subset of MNIST with random 

rotations. 

bg-rand Smaller subset of MNIST with uniformly 

distributed random noise background. 

bg-img Smaller subset of MNIST with random image 

background. 

bg-img-rot Smaller subset of MNIST digits with random 

background image and rotation. 

  

We compare  our proposed robust versions on NSC and 

SRC with the original algorithms. We also show the results 

from SVM. These are tabulated in Table 4. 

TABLE IV.  CHARACTER RECOGNITION 

Dataset SRC NSC SVM Robust 

SRC 

Robust 

NSC 

MNIST 98.33 87.19 88.43 98.42 97.16 

basic 96.91 85.03 87.49 97.03 95.43 

basic-rot 90.04 68.63 79.47 90.19 87.76 

bg-rand 91.03 72.25 79.67 91.69 76.17 

bg-img 84.14 65.68 75.09 85.11 85.84 

bg-img-

rot 

62.46 34.01 49.68 62.61 47.75 

 

Our robust SRC always yields the best results. NSC 

yields the worst. The disparsity between the NSC and its 

robust version is marked; the robust NSC yields better results 

than the SVM (and also NSC). The original SRC yields 

better results than the robust NSC.  

V. CONCLUSION 

In this work we improve two subspace based 

classification techniques. The first one is the Nearest 

Subspace Classifier (NSC) and the second one is the Sparse 

Representation based Classifier (SRC). NSC assumes that 

the samples of every class lie on a different subspace. In 

SRC the assumption is more generalized – it assumes the 

samples to lie on a union of subspaces. The original 

formulations of NSC and SRC assumed that the modelling 

error, if any, is small and approximately Normally 

distributed and hence the cost function should be the 

Eucidean distance. It is well known that such a cost function 

is sensitive to outliers. In this work we propose robust 

versions of NSC and SRC – we replace the Euclidean 

distance based cost functions with the more robust l1-norm. 

One could argue that having an lp-norm (0<p<1) would be 

more robust, but such lp-norms are non-convex.  

We verify the improvement empirically on benchmark 

datasets. In the first set of experiments, we compare these 

techniques on classification datasets from the UCI Machine 

Learning Repository. The second set of experiments are on 

the Extended YaleB face recognition database. The third 

database is the MNIST (and its variations) character 

recognition set. In all these experiments, we have seen that 

the robust versions of NSC and SRC perform better than 

their original versions; in fact in most cases our proposed 

techniques outperform sophisticated classifiers like support 

vector machine and neural network. 
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