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Abstract— This work proposes to learn autoencoders with 

sparse connections. Prior studies on autoencoders enforced 

sparsity on the neuronal activity; these are different from our 

proposed approach – we learn sparse connections. Sparsity in 

connections helps in learning (and keeping) the important 

relations while trimming the irrelevant ones. We have tested the 

performance of our proposed method on two tasks – 

classification and denoising. For classification we have compared 

against stacked autneencoders, contractive autoencoders, deep 

belief network, sparse deep neural network and optimal brain 

damage neural network; the denoising performance was 

compared against denoising autoencoder and sparse (activity) 

autoencoder. In both the tasks our proposed method yields 

superior results. 

Index Terms— autoencoder, classification, sparsity, denoising 

I. INTRODUCTION 

There is a plethora of work in sparse neural networks. 

Broadly it can be segregated into i) sparse activity and ii) 

sparse connectivity. Sparsity can arise in two contexts. The 

sparse activity property means that only a small fraction of 

neurons is active at any time. The sparse connectivity property 

means that each neuron is connected to only a limited number 

of other neurons.  

Since its onset, neural networks have been claimed to 

mimic the human brain. For a certain activity / task only a 

portion of the brain (neurons) are active. The whole brain is 

never used. In fact, it is a widely circulated myth that we use 

only 10% of our brain; the myth is untrue. But it is well known 

that only a certain portion of the brain is active for a certain 

task; i.e. given the whole brain only a sparse set of neurons are 

actually active (for the given task). Therefore, if indeed the 

neural network is an approximate representative of the brain, 

we would expect to have sparse connections. This aspect has 

been captured by LeCun’s work on ‘optimal brain damage’ [1]. 

He devised a technique to trim connections of a neural network 

(hence the name brain damage) without degrading its  

performance.  

In recent times the idea has been revisited. In [2, 3] sparsity 

is enforced both on the activity and on the connectivity. In [4] 

sparsity on activity was promoted for rectifier neural network; 

it was used in [5] to improve the performance on phone 

recognition. Sparsity in connections was exploited in [6] for the 

problem of speech recognition. In [7] and [8] sparsity in 

connections is enforced on convolutional neural network and 

recurrent neural network respectively. In most of these studies 

the common observation is that introduction of sparsity leads to 

a slight dip in performance but reduces the complexity of the 

network significantly. 

In this work we are specifically interested  in autoencoders. 

Although there has been a lot of work on sparse connectivity 

and sparse activity on neural networks, all prior studies in 

sparse autoencoders enforced sparsity on the activity; there is 

no prior study that promoted sparsity in connections. This is 

the first work to do so. In [9] sparsity was introduced in terms 

of firing neurons. If the neurons are of high value (near about 

1), it is allowed to be fired, the rest are not. In [10], only the top 

K high valued neurons are fired; in [11] only the neurons 

beyond a predefined threshold were fired. In [12], a 

comparison of different sparsity promoting terms (on activites) 

were compared; these were the KL divergence [9] and 

variations of l1-norm [11]. It was shown in [13] that by 

combining the output of several such sparse autoencoders 

(trained as in [9]), one is able to improve performance of 

several image recognition tasks. 

We compare our proposed sparsely connected autoencoder 

with several variants of autoencoders (for classification and 

denoising) and deep belief network (for classification). We find 

that our proposed technique yields better results compared to 

existing techniques.  

Although most of the readers of this paper will be abreast 

with literature on neural networks in general and autoencoders 

in particular, we provide a brief review of autoencoders for the 

sake of completeness in the next section. In section 4, our 

proposed method is described in detail. The experimental 

evaluation is reported in section 5. The conclusions of this 

work is discussed in section 6. 

 

II. BACKGROUND 
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Fig. 1. Single Layer Autoencoder 
 



An auto encoder (as seen in Fig. 1) consists of two parts – 

the encoder maps the input to a latent space, and the decoder 

maps the latent representation to the data. For a given input 

vector (including the bias term) x, the latent space is expressed 

as: 

h Wx       (1) 

Here the rows of W are the link weights from all the input 

nodes to the corresponding latent node. The mapping can be 

linear, but in most cases it is non-linear (sigmoid, tanh etc.): 

( )h Wx       (2) 

The decoder portion reverse maps the latent features to the 

data space.  

' ( )x W Wx       (3) 

Since the data space is assumed to be the space of real 

numbers, there is no sigmoidal function here. 

During training, the problem is to learn the encoding and 

decoding weights – W and W’. This is achieved by minimizing 

the Euclidean cost: 
2

, '

arg min ' ( )
F

W W

X W WX      (4) 

Here 1[ | ... | ]NX x x  consists all the training sampled 

stacked as columns. The problem (4) is clearly non-convex. 

However, it is solved easily by gradient descent techniques 

since the sigmoid function is smooth and continuously 

differentiable. 
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Fig. 2. Stacked Autoencoder 

 

There are several extensions to the basic autoencoder 

architecture. Stacked / Deep autoencoders [9] have multiple 

hidden layers (see Fig. 2). The corresponding cost function is 

expressed as follows: 

1 1 1

2

... , ' ... '

arg min ( )
L L

F
W W W W

X g f X


     (5) 

where   1 2' '... ' ( )Lg W W W f X and 

  1 2 1... ( )L Lf W W W X     . 

Solving the complete problem (5) is computationally 

challenging. The weights are usually learned in a greedy 

fashion – one layer at a time [14].  

Stacked denoising autoencoders (SDAE) [15] are a variant 

of the basic autoencoder where the input consists of noisy 

samples and the output consists of clean samples. Here the 

encoder and decoder are learnt to denoise noisy input samples. 

The learned features appear to be more robust when learnt by 

SDAE. 

In a recent work a marginalized denoising autoencoder was 

proposed [16], which does not have any intermediate nodes but 

learns the mapping from the input to the output. This 

formulation is convex (unlike regular autoencoders); the trick 

here is to marginalize over all possible noisy samples so that 

the dataset need not be augmented like SDAE. Such an 

autoencoder was used for domain adaptation.  

Another variation for the basic autoencoder is to regularize 

it, i.e. 
2

( )

arg min ( ) ( , )
F

W s

X g f X R W X    (6) 

The regularization can be a simple Tikhonov regularization – 

however that is not used in practice. It can be a sparsity 

promoting term [9]-[11] or a weight decay term (Frobenius 

norm of the Jacobian) as used in the contractive autoencoder 

[17]. The regularization term is usually chosen so that they are 

differentiable and hence minimized using gradient descent 

techniques. 

III. PROPOSED SPARSECONNECT AUTOENCODER 

Autoencoders usually have a non-linear activation function. 

However, in [18] it was shown that an autoencoder usually 

operates in the linear region. Therefore in this work, we will 

use a linear activation function. This allows us to derive a more 

efficient algorithm which is faster than its non-linear 

counterparts. We also show (experimentally) that the linear 

autoencoder yields better results than its non-linear counterpart. 

The basic formulation of an autoencoder with linear activation 

function is given by: 
2

',

arg min '
F

W W

X W WX     (7) 

The basic autoencoder is prone to overfitting; especially 

when the number of training samples is limited. Denoising 

autoencoders use a stochastic regularization technique. 

However, given the Euclidean cost function of the autoencoder 

a more direct way to regularize it would be incorporate penalty 

terms to the basic formulation. For example, a contractive 

autoencoder with linear activation function would lead to the 

following formulation: 

 2 2 2

',

arg min ' '
F F F

W W

X W WX W W     (8) 

The Frobenius norm on the weights regularizes the network to 

have small values. The regularization prevents overfitting of 

the network.  

We propose to regularize the autoencoder such that it has 

sparse connections both at the encoder and the decoder. The 

idea of trimming irrelevant connections in neural networks is 

not new; it was first proposed back in 1990 in the form of 

optimal brain damage [1]. In recent times, learning sparse 

structures in neural networks has gained momentum [2-8]. 

However, to the best of our knowledge, there is no work that 

learns autonencoders with sparse connections. Prior studies in 

sparse autoencoder [9-12] concentrate on sparse activities; not 

on sparse connections. In this respect ours is the first work to 

propose sparsely connected autoencoders. 



Just as a human brain does not require all its neurons for a 

specific task, we postulate that an autoencoder does not need to 

utilize all its connections either. The issue of maintaining 

important connections without over-fitting is taken care of, if 

we have sparse weights. The portions which are not useful for 

representation are pruned and only the important connections 

in the network are maintained. Such a sparse connection is 

easily achieved from the following proposed formulation, 

 2

1/0 1/0
',

arg min ' '
F

W W

X W WX W W     (9) 

We have abused the notation a bit, the subscript 1/0 denotes 

either an l1-norm or an l0-norm and is defined on the vectorial 

representation of the weights. The l1-norm is convex, and has 

been widely used in recent times by Compressed Sensing [19], 

[20]. But the l0-norm does not ideally yield sparse weights, the 

l0-norm does. Unfortunately l0-norm minimization is an NP 

hard problem [21]. However there are approximate techniques 

to solve such l0-minimization problems. 

Autoencoders with non-linear activation function are 

solved using gradient descent techniques. Such techniques 

cannot be directly applicable for our proposed formulation. 

This is because the l1/l0-norm penalties are not differentiable 

everywhere. In this work we follow a Majorization 

Minimization approach to solve the said problem. 

A. Majorization Minimization 
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(b) 
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Fig. 3. Majorization-Minimization [22] 

 

Fig. 3 shows the geometrical interpretation behind the 

Majorization-Minimization (MM) approach. The figure depicts 

the solution path for a simple scalar problem but essentially 

captures the MM idea. 

Let, J(x) be the function to be minimized. Start with an 

initial point (at k=0) xk (Fig. 3a). A smooth function Gk(x) is 

constructed through xk which has a higher value than J(x) for 

all values of x apart from xk, at which the values are the same. 

This is the Majorization step. The function Gk(x) is constructed 

such that it is smooth and easy to minimize. At each step, 

minimize Gk(x) to obtain the next iterate xk+1 (Fig. 3b). A new 

Gk+1(x) is constructed through xk+1 which is now minimized to 

obtain the next iterate xk+2 (Fig. 3c). As can be seen, the 

solution at every iteration gets closer to the actual solution. 

For convenience we express the problem (9) in a slightly 

different manner in terms of transposes –  
2

arg min ( )T T T

FH

X X H R H     (10) 

Here H=W’W and R(H) denotes the penalty.  

Only the least squares part need to be majorized; the penalty 

terms are not affected. 
2

( ) ( )T T T

F
J H X X H R H      (11) 

For this minimization problem, Gk(x), the majorizer of J(x) is 

chosen to be, 
2

( )

          ( ) ( )( )

T T T
k

F

T T T T T T
k k

G H X X H

H H aI XX H H

 

   
  (12)

 

where a is the maximum eigenvalue of the matrix XXT and I is 

the identity. 

One can check that at H=Hk the expression Gk(H) reduces 

to J(H). At all other points it is larger than J(H); the value of 

‘a’ assures that the second term is positive definite.  

    

    

  

2

( )

          ( )

2

( )

( ) 2

( )

( 2 ) ( )

T T T

k F

T
T T T T

k k

T T T T T

T
T T T T

k k

T T T T T T

k k k k

T

T T

G H X X H

H H aI XX H H R H

XX XX H HXX H

H H aI XX H H R H

XX H aI XX H XX H aI XX H

aHH R H

a BH HH C R H

 

    

  

    

     

 

    

 

where
1

( )T T T T

k kB H X X X H
a

   ,  

( )T T T

k kC XX H aI XX H    

Using the identity 
2

2
2T T TA D A A A D D D    , one can 

write, 
2

2
( ) ( )T

kG H a B H aB B C R H      

2

2
( )a B H R H K     

where K consists of terms independent of x. 

Therefore, minimizing Gk(x) is the same as minimizing the 

following, 

2'

2

1
( ) ( )kG H B H R H

a
      (13) 



where
1

( )T T T T

k kB H X X X H
a

   . 

This update is known as the Landweber iteration. 

B. l1-norm penalty 

First we derive the algorithm for solving the l1-norm 

minimization problem. 

 2

1 1
',

arg min ' '
F

W W

B W W W W
a


     (14) 

This is a bilinear problem and we propose to solve it 

alternately, i.e. we fix W’ and solve W and then solve W’ 

assuming W is fixed. These two steps are done in every 

iteration.  

2

1 1
arg min 'k k F

W

W B W W W
a


      (15a) 

2

1 1 1
'

' arg min ' 'k k F
W

W B W W W
a


      (15b) 

In both cases, the problem remains the same – that of a least 

squares minimization with l1-norm penalty. 

Let us take the first problem and work out the solution for 

it; the solution for the other problem will remain the same.  

To solve (15a) we invoke the majorization approach once 

again. Therefore (15a) can be expressed as, 

2

1
arg min

F
W

P W W
a




     (16) 

where  
1

' 'T
k k k kP W W B W W


    , α is the maximum 

eigenvalue of ' 'TW W  

The above function (16) is actually de-coupled, i.e. 

 
2 2

1 i i iF
i

P W W P W W
a





       (17) 

Therefore, (17) can be minimized term by term, i.e. 

 2

1
2 2 ( )

F

i i i

i

P W W
P W signum W

W a

 



  
  


 (18) 

 
Fig. 4. Soft Threshold Rule (with τ=2) 

 

Setting the partial derivatives to zero and solving for W 

gives the graph shown in Fig. 4 with threshold
2a




. That is, 

the minimizer of (16) is obtained by applying the soft-threshold 

rule to P with threshold
2a




. The soft-threshold rule is the 

non-linear function defined as, 

( , ) 0

x x

soft x x

x x

 

 

 

  


 
  

    (19) 

Or more compactly,  

( ) max(0,| | )
2

W signum P P
a




      (20) 

This concludes the steps for solving (15a); the steps for (15b) 

are exactly the same. In a compact fashion, the algorithm for 

solving the l1-norm penalty problem is given as: 
Initialization: 

 

2

0 0

arg min

'  and 

T T

FH

T

T

H X X H

H USV

W US W V

 



 

  

In every iteration ‘k’ 

 

2
1 1

1

2
1 1 1

'

1
Compute ( )

Update arg min '

1
' '

( ) max(0,| | )
2

Similarly update ' arg min ' '

T T T T
k k

k k F
W

T
k k k k

k

k k F
W

B H X X X H
a

W B W W W
a

P W W B W W

W signum P P
a

W B W W W
a















 

  

  

  

 

  

 

Our initialization is deterministic, hence the results are 

results are repeatable – there is no variation between trials as 

long as other parameters remain same. 

C. l0-norm penalty 

The l1-norm penalty is basically a shrinkage function 

defined by the soft thresholding. It cannot get an exactly sparse 

solution, it only shrinks the values of unwanted weights. To get 

a sparse solution in every iteration, one needs to solve the l0-

norm minimization problem. This is an NP hard problem but 

has approximate solutions. The more common practice is to 

solve (40) using a greedy approach based on Orthogonal 

Matching Pursuit [23], [24]. However, these are not efficient 

for solving large scale problems. To solve a k-sparse problem, 

k iterations are required. A better approach to solve (21) is 

based on Iterative Hard Thresholding [25].  

 2

0 0
',

arg min ' '
F

W W

B W W W W
a


     (21) 

We solve it via alternating minimization.  

2

1 0
argmin 'k k F

W

W B W W W
a


      (22a) 

2

1 1 0
'

' arg min ' 'k k F
W

W B W W W
a


      (22b) 



As before, both the problems remain the same. We only 

derive the algorithm to solve (22a). To solve it, we invoke the 

majorization approach once again. Therefore (22a) can be 

expressed as, 

2

0
arg min

F
W

P W W
a




     (23) 

where  
1

' 'T
k k k kP W W B W W


    

This is a decoupled problem and can be expressed as, 

2 2 0
1 1 10

2 0

( ) | |

                                  ... ( ) | |

F

n n n

P W W P W W
a a

P W W
a

 

 





     

  

  (24) 

We can process (24) element-wise.  

To derive the minimum, two cases need to be considered: 

case 1 – 0iW  and case 2 – 0iW  . The element-wise cost is 

0 in the first case. For the second case, the minimum is reached 

when i iW P . Comparing the cost on both cases, 

2

0 if 0

( )  if 

i

i i i

W

W W P
a







  
 

This suggests the following updates rule, 

when / 2

when / 20

ii
i

i

P aP
W

P a

 

 

 
 


  

This is popularly known as hard thresholding and is 

represented as: 

1 ,
2

kW HardTh P
a






 
  

 
     (25) 

This leads to an algorithm somewhat similar to the previous 

one. It is succinctly represented below.   
Initialization: 

 

2

0 0

arg min

'  and 

T T

FH

T

T

H X X H

H USV

W US W V

 



 

  

In every iteration ‘k’ 

 

2
1 0

1

2
1 1 0

'

1
Compute ( )

Update arg min '

1
' '

,
2

Similarly update ' arg min ' '

T T T T
k k

k k F
W

T
k k k k

k

k k F
W

B H X X X H
a

W B W W W
a

P W W B W W

W HardTh P
a

W B W W W
a















 

  

  

  

 
  

 

  

 

IV. EXPERIMENTAL EVALUATION 

The MNIST digit classification task is composed of 28x28 

images of the 10 handwritten digits. There are 60,000 training 

images with 10,000 test images in this benchmark. The images 

are scaled to [0,1] and we do not perform any other pre-

processing. 

Experiments are also carried out on the more challenging 

variations of the MNIST dataset. These have been used in [11] 

among others and were introduced as benchmark deep learning 

datasets. All these datasets have 12,000 training (we do not 

need validation) and 50,000 test samples. The size of the image 

as before is 28x28 and the number of classes are 10. 

 
Dataset Description 

basic Smaller subset of MNIST. 

basic-rot Smaller subset of MNIST with random rotations. 

bg-rand Smaller subset of MNIST with uniformly distributed 

random noise background. 

bg-img Smaller subset of MNIST with random image 

background. 

bg-img-rot Smaller subset of MNIST digits with random 

background image and rotation. 

 

We have also evaluated on the problem of classifying 

documents into their corresponding newsgroup topic. We have 

used a version of the 20-newsgroup dataset [26] for which the 

training and test sets contain documents collected at different 

times, a setting that is more reflective of a practical application. 

The training set consists of 11,269 samples and the test set 

contains 7,505 examples. We have used 5000 most frequent 

words for the binary input features. We follow the same 

protocol as outlined in [27]. 

Our third dataset is the GTZAN music genre dataset [28, 

29]. The dataset contains 10000 three-second audio clips, 

equally distributed among 10 musical genres:  blues, classical, 

country, disco, hip-hop, pop, jazz, metal, reggae and rock.  

Each example in the set is represented by 592 Mel-Phon 

Coefficient (MPC) features.  These are a simplified 

formulation of the Mel-frequency Cepstral Coefficients 

(MFCCs) that are shown to yield better classification 

performance. Since there is no predefined standard split and 

fewer examples, we have used 10-fold cross validation 

(procedure mentioned in [15]), where each fold consisted of 

9000 (we do not require validation examples unlike [8]) 

training examples and 1000 test examples. 

A. Linear vs Non-linear 

Most studies in neural networks employ a non-linear 

activation function. We proposed linear activation owing to the 

ease of solution. We will show that, atleast for the benchmark 

datasets used in these experiments, the simple linear (Identity) 

activation function yields better classification accuracy than 

their non-linear (sigmoid) counterpart.   

The linear autoencoder weights are initialized by solving the 

least squares problem, 
2

min
FQ

X QX and setting W as the top 

(number of nodes) right singular vectors of Q. For the non-

linear autoconder we use the Hinton’s implementation [30]. 



The autoencoder architectures remains same otherwise; 

both (linear and non-linear) are three layer architectures with 

392-196-98 hidden nodes. The representation from the deepest 

layer is used for classification. We employ two non-parametric 

classifiers – KNN (K=1) and Sparse Representation based 

Classification (SRC) [31]. We want to test the representation / 

feature extraction capability of the linear and non-linear 

autoencoders; this is best done using simple non-parametric 

classifiers. Parametric classifiers like NN and SVM may be 

fine tuned to yield better results, but in such a case it is difficult 

to gauge if the improvement in results is owing to the feature 

extraction or owing to the fine tuning. 

TABLE I.  LINEAR VS NON-LINEAR ACTIVATION 

Dataset KNN SRC 

Linear Non-linear Linear Non-linear 

MNIST 97.33 96.11 98.33 97.29 

basic 95.25 94.86 96.91 96.43 

basic-rot 84.83 80.71 90.04 84.29 

bg-img 77.16 70.97 84.14 76.94 

bg-rand 86.42 81.11 91.03 85.49 

bg-img-rot 52.21 44.6 62.46 50.96 

20-

newsgroup 
71.78 70.48 72.56 70.49 

GTZAN 84.08 83.31 84.39 83.37 

 

The results show that the linear one always yields better 

results. The improvement is small when the number of 

training samples are larger but for the more challenging 

datasets, the linear autoencoder yields improve by a large 

margin. 

B. Classification Performance 

We compare our results with the stacked autoencoder 

(SAE), Contractive Autoencoder (CAE) and Deep Belief 

Network (DBN) [28]. The SAE and CAE uses linear 

activation. As before, the representation from the deepest layer 

is used as features. For our sparsely connected autoencoder 

λ=0.01 is used. In each of the tables, the best results are shown 

in bold. 

TABLE II.  KNN (K=1) RESULTS 

Dataset SAE CAE DBN Proposed 

l0-norm 

Proposed 

l1-norm 

MNIST 97.33 82.83 97.05 97.21 95.91 

basic 95.25 79.92 95.37 95.39 92.49 

basic-rot 84.83 58.56 84.71 85.14 81.01 

bg-rand 86.42 65.61 86.36 86.88 68.87 

bg-img 77.16 58.51 77.16 77.22 79.84 

bg-img-rot 52.21 27.10 50.47 51.80 38.91 

20-

newsgroup 

70.48 71.08 70.09 71.74 71.23 

GTZAN 83.31 82.67 80.99 83.89 83.08 

 

TABLE III.  SRC RESULTS 

Dataset SAE CAE DBN Proposed 

l0-norm 

Proposed 

l1-norm 

MNIST 98.33 87.19 88.43 98.42 97.16 

basic 96.91 85.03 87.49 97.03 95.43 

basic-rot 90.04 68.63 79.47 90.19 87.76 

bg-rand 91.03 72.25 79.67 91.69 76.17 

bg-img 84.14 65.68 75.09 85.11 85.84 

bg-img-rot 62.46 34.01 49.68 62.61 47.75 

20-

newsgroup 

70.49 71.08 71.02 72.38 71.97 

GTZAN 83.37 82.70 81.21 84.72 83.89 

TABLE IV.  SVM RESULTS 

Dataset SAE CAE DBN Proposed 

l0-norm 

Proposed 

l1-norm 

MNIST 98.50 88.74 98.53 98.60 97.70 

basic 96.96 86.61 97.07 97.12 95.70 

basic-rot 89.43 72.54 89.05 89.22 87.07 

bg-rand 91.28 75.20 89.59 91.73 87.04 

bg-img 84.86 68.76 85.46 85.35 78.01 

bg-img-rot 60.53 40.97 58.25 60.91 46.30 

20-
newsgroup 

70.28 70.95 71.82 73.98 73.54 

GTZAN 82.76 82.09 82.69 83.52 83.04 

The results show that our proposed method yields better 

results than SAE and DBN on an all the datasets (except for the 

larger MNIST with KNN). Under fair comparison (keeping the 

classifiers to be same and non-parametric) one can say that our 

method yields better representation than other deep learning 

techniques like SAE, CAE and DBN. 

Next (Table IV) we compare the results with stacked 

denoising autoencoder (SDAE), deep belief network (DBN), 

sparse deep neural network (SDNN) [33] and optimal brain 

damage (OBD) [1]. We repeat the results from l0-norm sparsely 

connected autoencoder with SRC (since these are the best 

results we obtained). SDAE and DBN uses a fine tuning with a 

neural network classifier in the final stage. SDNN is a 

contemporary sparse deep classifier and OBD is a classical 

work with a shallow architecture. The results show that our 

method yields results which are at par with SDAE and DBN 

and are better than sparse neural networks. 

TABLE V.  COMPARATIVE RESULTS 

Dataset SDAE DBN SDNN OBD Proposed 

MNIST 98.72 98.76 98.57 97.99 98.42 

basic 97.16 96.89 96.69 95.41 97.03 

basic-rot 90.47 89.70 89.58 87.89 90.19 

bg-rand 89.70 93.27 90.21 88.27 91.69 

bg-img 83.32 83.69 82.96 80.65 85.11 

bg-img-rot 56.24 52.61 51.63 50.19 62.61 

20-

newsgroup 

70.93 72.40 69.74 65.44 72.38 

GTZAN 83.98 81.62 80.31 77.80 84.72 

 

We have compared the training times of different 

autoencoders and DBN. The results are shown in Table V. 

Both are proposed methods are significantly faster than the 

others. The computational cost per iteration is higher for us, but 

the algorithms converge faster. The results are only shown on 

the large MNIST dataset and the MNIST basic. 



TABLE VI.  TRAINING TIME IN MINUTES 

Dataset → MNIST basic 

DBN 78 21 

Stacked Autoencoder (non-linear) 251 53 

Stacked Autoencoder (linear) 111 35 

Contractive Autoencoder (linear) 98 24 

Proposed l1-norm 4 1 

Proposed l0-norm 50 6 

 

The configuration of the machine running these experiments is: 

RAM- 24 GB 

OS- Red Hat Enterprise Linux Server release 7.0 (Maipo) 

CPU - Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz ,there are two cpus of 6 

cores each 

Simulation on Matlab R2014a. 

C. Denoising Results 

Autoencoders have been used previously for image 

denoising. In [11] it was shown that autoencoder with sparse 

features leads to good denoising results. They showed results 

for Gaussian and impulse denoising. It is not optimal to remove 

impulse noise with autoencoders; this is because impulse noise 

is sparse. Since we are formulating an autoencoder with l2-

norm data fidelity, we can optimally remove Gaussian noise 

only; this is the problem we address in this work. 

For comparison, we use the standard metrics for image 

quality assessment - PSNR (Peak Signal to Noise Ratio) and 

SSIM (Structural Similarity Index) [34]. We compare our 

approach (SparseConnect) with the sparse autoencoder [11] 

and stacked denoising autoencoder (SDAE).  

We use single layer autoencoders for image denoising. The 

number of nodes in the hidden layer is kept to be 512. The 

value of λ is 0.001. 

We carried out experiments on the grayscale CIFAR-10 

dataset. The CIFAR-10 dataset (Fig. 10) is composed of 10 

classes of natural images with 50,000 training examples in 

total, 5,000 per class. Each image is of size 32x32. For these 

experiments the color images have been converted to 

greyscale. Zero mean Gaussian noise was added to these 

images. The noisy images served as the input to the 

autoencoders and the clean images were the output. For testing, 

the noisy test images were as inputs and the image obtained at 

the output was compared with the clean image to test the 

denoising performance.  

The results are shown in the following table. The PSNR 

and the SSIM values shown here are the means over 10,000 

test images.  

TABLE VII.  DENOISING RESULTS 

Noise Variance, PSNR 

and SSIM for Noisy 
Image 

SDAE Sparse 

Autoencoder 

Proposed 

SparseConnect  
(l1-norm) 

Proposed 

SparseConnect  
(l0-norm) 

Variance=0.01, 

PSNR=19.9691 

SSIM=0.5691 

PSNR=21.95 

SSIM=0.6315 

PSNR=22.94 

SSIM=0.6803 

PSNR=23.90 

SSIM=0.7238 

PSNR=26.03 

SSIM=0.8052 

Variance=0.04 

PSNR= 14.0155 

SSIM=0.3256 

PSNR=21.66 

SSIM=0.6167 

PSNR=22.63 

SSIM=0.6667 

PSNR=23.53 

SSIM=0.7027 

PSNR=25.68 

SSIM=0.7928 

Variance=0.09 
PSNR= 10.4936 

SSIM=0.2011 

PSNR=21.30 
SSIM=0.5973 

PSNR=22.25 
SSIM=0.6478 

PSNR=23.01 
SSIM=0.6725 

PSNR=25.27 
SSIM=0.7779 

 

The improvement is significant. Usually in image 

denoising literature a PSNR improvement of 0.5 dB to 1 dB 

is considered to be good. In this case the improvement is 

near about 3dB compared to the sparse denoising 

autoencoder. Also the improvement in SSIM is around 0.1 – 

this is huge improvement. For visual evaluation some sample 

images are shown in Fig. 5. 

 

           

           

           

           
 

Fig. 5. Left to Right – Original test image, noisy image, SDAE, Sparse 
Autoencoder, Proposed l1-norm and Proposed l0-norm. 

 

The denoising results may not be at par with the state-of-

the-art like BM3D or KSVD, but are better than competing 

autoencoder based techniques. The proposed SparseConnect 

autoencoder gets the best denoising results, balancing noise 

and sharpness. 

V. CONCLUSION 

This work proposes the concept of sparse connections in 

autoencoders. Although there are several studies on sparsely 

connected neural networks, there is no prior study on 

sparsely connected autoencoder. This is the first work in that 

respect. All prior studies in sparse autoencoders concentrate 

on the problem of sparse activity.  

The motivation is drawn from the success of DropOut 

and DropConnect neural networks where over-fitting was 

prevented by randomly switching off some activations or 

connections during training. Instead of using such a 

stochastic regularization technique, our proposed method 

deterministically ‘learns’ the sparse connections. It keeps the 

relevant connections and prunes the unimportant ones. This 



is achieved by introducing sparsity promoting regularization 

penalties on the autoencoder weights. 

Experiments were carried out for two benchmark 

autoencoder tasks – classification and denoising. For 

classification, comparison is made with the SAE, CAE, 

DBN, SDAE, sparse deep neural network (SDNN) and 

optimal brain damage (OBD). Under fair comparison (when 

non-parametric classifiers are used) our method outperforms 

others. Even with fine-tuned neural network architectures, 

our proposed approach yields better results than SDNN and 

OBD and performs at par with densely connected networks 

like SDAE and DBN. For denoising, we compared against 

the denoising autoencoder and the sparse autoencoder [3]. 

Even for this task our proposed approach yields considerably 

better results.  
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