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Abstract. The sparse representation based classification (SRC) was initially pro-

posed for face recognition problems. However, SRC was found to excel in a va-

riety of classification tasks. There have been many extensions to SRC, of which 

group SRC, kernel SRC being the prominent ones. Prior methods in kernel SRC 

used greedy methods like Orthogonal Matching Pursuit (OMP). It is well known 

that for solving a sparse recovery problem, both in theory and in practice, l1-

minimization is a better approach compared to OMP. The standard l1-minimiza-

tion is a solved problem. For the first time in this work, we propose a technique 

for Kernel l1-minimization. Through simulation results we show that our pro-

posed method outperforms prior kernelised greedy sparse recovery techniques.  
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1 Introduction 

In sparse recovery, the problem is to find a solution to the linear inverse problem 

  y Ax n    (1) 

where, y is the observation, A is the system matrix, x is the solution and n is the 

noise assumed to be Normally distributed. The solution x is sparse, i.e. it is assumed to 

be have only ‘k’ non-zeroes. Such a problem arises in machine learning and signal pro-

cessing; in fact there is a branch of signal processing called Compressed Sensing that 

evolves around the solution of such problems.  

The exact solution to (1) is NP hard [1] and is expressed as, 

 
2

2 0
min  such that 

x
y Ax x k    (2) 

Here the l0-norm (not exactly a norm in the strictest sense of the term) simply counts 

the number of non-zeroes in the vector. There are two approaches to solve (2) – the first 

one is a greedy approach, where the support of x is iteratively detected and the corre-

sponding values are estimated. The orthogonal matching pursuit (OMP) [2] is the most 

popular greedy technique. There are several extensions to the basic OMP approach like 

the stagewise orthogonal matching pursuit and the CoSamp.  
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However OMP is fraught with several limitations. First, the guarantees are only 

probabilistic; besides several strict assumptions need to be made regarding the nature 

of the system matrix ‘A’ in order for OMP to succeed (theoretically). Both in theory 

and in practice, a much better way to solve the sparse recovery problem is to relax the 

NP hard l0-minimization problem by its closest convex surrogate the l1-norm. This is 

expressed as,  
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2 1
min  such that 

x
y Ax x     (3) 

This formulation was first proposed in Tibshirani’s paper on LASSO [3]. Although 

convex, this (3) is a constrained optimization problem and is hard to solve; hence in 

[3], the unconstrained version was solved instead.  
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2 1
min +

x
y Ax x  (4) 

This is a quadratic programming problem and can be solved efficiently using itera-

tive soft thresholding [4].  

This formulation (4) is a typical linear regression problem. In this work, we are in-

terested in kernel regression / classification problems. A typical non-linear regression 

is expressed as,  

 ( )y A x n   (5) 

Here the output is expressed as a linear combination of a non-linear system matrix. 

The Tikhonov regularized solution of (5) has a closed form solution via the kernel trick.  

In this work we are interested in solving problems where a non-linear combination 

of the output can be expressed as linear combination of non-linear inputs, i.e., 

 ( ) ( )y A x n     (6) 

Here both the input (A) and the output (y) are of non-linear forms. Such a problem 

does not arise in regression, where the problem is to predict the output (5) and not a 

non-linear version of the output (6), but it does arise in kernel sparse representation 

based classification [5-7]; these studies were based on modifying the OMP algorithm. 

Issues arising in the linear version of the OMP also persists in the non-linear version. 

A better approach would be modify the l1-minimization algorithm to support kernels. 

This is the topic of this paper. 

2 Brief review on sparse representation based classification 

The SRC assumes that the training samples of a particular class approximately form 

a linear basis for a new test sample belonging to the same class. One can write the 

aforesaid assumption formally. If xtest is the test sample belonging to the kth class then, 

 
,1 ,1 ,2 ,2 , ,...

k ktest c c c c c n c nx x x x n         (7) 



where xc,i are the training samples and η is the approximation error. 

In a classification problem, the training samples and their class labels are provided. 

The task is to assign the given test sample with the correct class label. This requires 

finding the coefficients αc,i in equation (8). Equation (8) expresses the assumption in 

terms of the training samples of a single class. Alternately, it can be expressed in terms 

of all the training samples so that 

 
testx X n    (8) 

where
1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

c Cn c c n C C nX x x x x x x  and 

11,1 1, ,1 , ,1 ,[ ... ... ... ... ... ]
c C

T
n c c n C C n       . 

According to the SRC assumption, only those α’s corresponding to the correct class 

will be non-zeroes. The rest are all zeroes. In other words, α will be sparse. Therefore, 

one needs to solve the inverse problem (8) with sparsity constraints on the solution. 

This is formulated as: 

 
2

12
min testx X x


    (9) 

Once (9) is solved, the representative sample for every class is computed: 

, ,

1

( )  
cn

rep c j c j

j

x c x



 . It is assumed that the test sample will look very similar to the 

representative sample of the correct class and will look very similar, hence the residual
2

2
( ) ( )test repc x x c   , will be the least for the correct class. Therefore once the residual 

for every class is obtained, the test sample is assigned to the class having the minimum 

residual. 

There are several extensions to the basic SRC; in its pristine form it is an unsuper-

vised approach – it does not utilize information about the class labels. In [8-10] it was 

argued that α is supposed to be non-zero for all training samples corresponding to the 

correct class. The SRC assumes that the training samples for the correct class will be 

automatically selected by imposing the sparsity inducing l1-norm; it does not explicitly 

impose the constraint that if one class is selected, all the training samples corresponding 

to that class should have corresponding non-zero values in α. It was claimed in [2-4] 

that better recovery can be obtained if selection of all the training samples within the 

class is enforced. This was achieved by employing a supervised l2,1-norm instead of the 

l1-norm.  
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2 2,1
min testx X


     (10) 

where the mixed norm is defined as
2,1 2

1

c

k

k

 


 . 

The inner l2-norm enforces selection of all the training samples within the class, but 

the sum-of- l2-norm over the classes acts as an l1-norm over the selection of classes and 



selects very few classes. The block sparsity promoting l2,1-norm ensures that if a class 

is selected, ALL the training samples within the class are used to represent the test 

sample.  

A recent addition to the suite of sparse representation based classifiers is the group 

sparse representation based classifier [11]. This is a generalization of all of the above 

that can handle multiple kinds of datasets (like multi-modal biometrics) and multiple 

types of features in a single framework.  

Several studies independently proposed the Kernel Sparse Representation based 

Classification (KSRC) approach [5-7]. KSRC is a simple extension of the SRC using 

the Kernel trick. The assumption here is that the non-linear function of the test-sample 

can be represented as a linear combination of the non-linear functions of the training 

samples, i.e. 

 ( ) ( )testx X n      (11) 

Here (.)  represents a non-linear function. As mentioned before, the prior studies 

solved this problems by modifying the Orthogonal Matching Pursuit.  

 

3 Proposed Approach  

3.1 l1-minimization 

First we will study the vanilla implementation of iterative soft thresholding algo-

rithm. The goal is to solve (9). The derivation can be followed from [12]. The algorithm 

is given as follows. 

 

Initialize: 
2

0 2
min

x
x y Ax    

Continue till convergence 

Landweber Iteration – 1 1

1
( )T

k kb x A y Ax
a

      

Soft thresholding – ( )max 0,
2

kx signum b b
a

 
  

 
  

 

Here the step-size ‘a’ is the maximum Eigenvalue of ATA. The iterations converge 

when the objective function or the value of x does not change significantly over suc-

cessive iterations.  

With a slight modification, one can have an iterative hard thresholding algorithm 

[13]. The only difference between the hard and soft thresholding algorithm is the thresh-

olding step. In the hard thresholding only those values are kept that are greater than a 

pre-defined threshold. Such an algorithm is supposed to approximately solve the l0-

minimization problem. In practice, it does not yield very good results.  



3.2 Kernel l1-minimization 

Here we are interested in solving (6). We repeat it for the sake of convenience.  

 ( ) ( )y A x n    

If we write down the soft thresholding algorithm for the same, we get 

 

Initialize: 
2

0 2
min ( ) ( )

x
x y A x     

Continue till convergence 

Landweber Iteration – 1 1

1
( ) ( ( ) ( ) )T

k kb x A y A x
a
        

Soft thresholding – ( )max 0,
2

kx signum b b
a

 
  

 
  

 

First, let us look at the initialization. The normal equations are of the form, 

   0( ) ( ) ( ) ( )T TA A x A y     (12) 

One can easily identify the kernels: ( , ) ( ) ( )TA A A A    and 

( , ) ( ) ( )TA y A y   . With the kernel trick, we can express (12) as, 

 
1

0 0( , ) ( , ) ( , ) ( , )A A x A Y x A A A Y        (13) 

The inversion is guaranteed by the positive definiteness of the kernel.  

Now, we look at the Landweber iteration step. One can easily see that, it can be 

expressed as  1 1

1
( ) ( ) ( ) ( )T T

k kb x A y A A x
a
       . Identifying the kernels, this is 

represented as, 

  1 1

1
( , y) ( , )k kb x A A A x

a
      (14) 

The soft-thresholding step does not require any change.  

4 Experimental Evaluation 

Once the sparse recovery problem is solved, the residual error needs to be expressed 

in terms of kernels. This is easily done (keeping the same notation for SRC as before).  
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4.1 Results on Benchmark Classification Tasks 

In [5] the KSRC was tested on benchmark datasets from the UCI Machine Learning 

repository. We use the same datasets and follow the same experimental protocol here. 

No feature extraction or dimensionality reduction was applied on these datasets. We 

compare the KSRC formulation in [5] with ours; both of them use an RBF kernel. To 

benchmark, the results from SRC and SVM are also shown. 

Table 1. Error Rate % on Benchmark Classification Tasks 

Dataset SVM SRC KSRC [5] Proposed 

Breast 4.09 54.57 5.78 4.09 

Glass 30.29 33.77 32.46 30.52 

Heart 18.7 22.8 23.8 20.35 

Hepatitis 34.51 45.49 38.04 34.51 

Ionosphere 5.38 8.21 13.42 6.23 

Iris 5.63 20 4.79 4.79 

Liver 31.05 35.88 32.81 31.05 

Musk 6.84 14.75 10 8.29 

Pima 24.67 34 30.4 26.8 

Sonar 12.9 23.48 12.46 12.09 

Soy 4.35 11.65 3.41 3.41 

Vehicle 18.5 18.72 22.96 18.72 

Vote 5.59 7.11 7.04 5.92 

Wdbc 2.7 6.4 3.44 3.4 

Wine 0.86 2.41 1.55 1.55 

Wpbd 20.31 26.46 26 22.52 

 

One can see from the table that in most cases SVM outperforms the SRC based 

methods. However comparison within SRC and its variants show that our method 

always yields the best results. The prior formulation of KSRC [5] had a naive 

implementation, therefore even with the kernel trick it was unable to improve upon the 

SRC which benefitted from more sophisticated optimization algorithm. In this work, 

our proposed method enjoys the dual benefit of non-linear kernels and better 

optimization; hence the results always outperform prior techniques.  



4.2 Results on Hyperspectral Image Classification 

In [6] it was shown that the KSRC (based on KOMP) performed exceptionally well 

for hyperspectral image classification problems. In this work, we show that our 

proposed method improves upon the prior work.  

We evaluate our proposed Hyperspectral Image Classification on – 1. Indian Pines 

dataset which has 200 spectral reflectance bands after removing bands covering the 

region of water absorption and 145*145 pixels of sixteen categories; and, 2. Pavia Uni-

versity dataset which has 103 bands of 340*610 pixels of nine categories. The back-

ground i.e Class 0 was excluded from the second dataset. For each dataset, we randomly 

select 10% of the labelled data as training set and rest as testing set. Input consists of  

raw data of all the spectral channels pixel-wise. 

In [6] a thorough study had been carried out by comparing KOMP based KSRC with 

SVM, SRC, KSRC etc. In [6] it was claimed that their KOMP based technique outper-

forms others. Therefore, in this work, we only need to show that our proposed method 

outperforms [6]. The results can be visualised from figure 1. One can see that our pro-

posed method yields better results compared to the prior approach.  

   

   

Fig. 1. Top: Pavia University; Bottom: Indian Pines. Left to Right: Groundtruth, KOMP based 

KSRC [6] and Proposed.  

5 Conclusion 

In this work, we propose a technique for solving a kernel l1-minimization problem. 

To the best of our knowledge this is the first work on this topic. We start with the vanilla 

implementation of the l1-minimization problem via iterative soft thresholding and show 

how the kernel trick can be employed on it.  



The proposed kernel l1-minimization problem is employed here to solve the kernel 

sparse representation based classification problem. We have compared our proposed 

technique on two implementations of the same – [5] and [6]. Experiments on bench-

mark classification datasets from the UCI machine learning repository show that our 

method is better than [5]. Evaluation of our proposed technique with [6] for hyperspec-

tral imaging problems show that our method is also better than the kernel OMP based 

implementation [6].  

In the future, we would like to extend this formulation to solve other variants of SRC 

like group sparse classification, robust sparse classification and robust group sparse 

representation based classification. We will also compare the proposed methods on a 

host of other real life problems.  
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