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Abstract. Extreme Learning Machine (ELM) or Randomized Neural Network 
(RNN) is a feedforward neural network where the network weights between the 
input and the hidden layer are not learned; they are assigned from some proba-
bility distribution. The weights between the hidden layer and the output targets 
are learnt. Neural networks are believed to mimic the human brain; it is well 
known that the brain is a redundant network. In this work we propose to expli-
citly model the redundancy of the human brain. We model redundancy as linear 
dependency of link weights; this leads to a low-rank model of the output (hid-
den layer to target) network. This is solved by imposing a nuclear norm penalty. 
The proposed technique is compared with the basic ELM and the Sparse ELM. 
Results on benchmark datasets, show that our method outperforms both of 
them.  

Keywords: Feedforward neural network, Extreme learning machine, low-rank, 
nuclear norm 

1 Introduction 

Neural networks are believed to mimic the human brain. The conventional archi-
tecture for a neural network is an input layer (for the samples), followed by a hidden 
layer and at the output is the target or class labels. Traditional neural network learns 
the link weights between the input and hidden layer nodes as well as the weights be-
tween the hidden layer nodes and the target. Randomized neural networks (RNN) or 
extreme learning machines (ELM) do not learn the weights between the input and the 
hidden layer; these weights are assigned (fixed) following some random probability 
distribution.  

There are some studies in cognitive sciences supporting the usage of random filters 
in early vision; also there is mounting mathematical evidence from random matrix 
theory that points to linear separability [1, 2]. Basically, random projections play the 
same role as a non-linear kernel, it projects the data to a space such that it is linearly 
separable. ELM / RNN [3] is based on the same principle. However, using kernels for 
ELM [4, 5] seems to be an overkill, since the purpose of using a deterministic kernel 
and random projection is the same – linear separability; thus using the kernel on top 
of random projection is not likely to improve accuracy significantly.  

The usual model of neural network is not sparse, there all the link weights are non-
zeroes. This increases model complexity and reduces speed. The seminal work that 
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introduced sparsity into neural network learning is Lecun’s Optimal Brain Damage 
(OBD) [6]. In this work, the link weights were iteratively pruned by thresholding the 
saliency of the network. Optimization has evolved significantly since the publication 
of OBD almost 3 decades back; currently sparsity is introduced by imposing an l1-
norm or l0-norm on the link weights [7-9]. Sparsity has also been introduced in the 
ELM framework [10]; however the formulation is slightly different, it introduces 
sparsity in a manner similar to sparse support vector machines.  

The requirement of sparsity arises from the redundancy of the network. Sparsity 
kills the redundant connections and keeps only the most relevant ones. However, this 
is not the way human brains operate. There is a large redundancy in our brain, that is 
why even though thousands of neurons die in our brain regularly after a certain age, 
we are able to carry forth all our memory and cognitive abilities without any impair-
ment. Even in extreme situations like shock or trauma or ischemic attacks, our brain is 
able to recover most of its cognitive functions. All this points to the redundancy of 
our brain. Since modelling the human brain is the holy grail of machine learning, 
instead of killing the links, we propose to explicitly model the redundancy into the 
neural network. In principle, we believe, our proposed model will better mimic the 
human brain compared to existing ones.  

2 Proposed Formulation 

 
Fig. 1. Neural Network 

The basic architecture for a neural network is shown above. X is the input training 
data. In ELMs the network weights (R) is not learnt – it is fixed. Therefore the input 
to the hidden layer is simply RX. There is an activation function (φ) at the hidden 
nodes. Therefore the output from the hidden nodes is given by, 

 ( )Z RXϕ=   (1) 

The output network connects the Z to the targets T. This is given by, 

 T WZ=   (2) 

Assuming a Euclidean cost function, (2) has a nice closed form solution in the 
form of a pseudo-inverse, given by, 



 ( ) 1T TW ZZ ZT
−

=   (3) 

This solution (3) does not include any prior regarding the network weights W. The 
link weights are independent. We propose to incorporate redundancy; the redundancy 
is modeled in terms of linear dependency of the columns / rows of W. On other words 
this would lead to a matrix that is rank deficient. Mathematically this can be ex-
pressed as,  

 2arg min  such that W is low-rank
F

W
T WZ−  (4) 

Unfortunately (4) is an NP hard problem; the complexity of solving this problem is 
doubly exponential. Researchers in machine learning and signal processing have been 
interested in this problem in the past few years for a variety of applications – Colla-
borative Filtering [11], Distributed Sensor Network [12, 13], Direction of Arrival 
estimation [14] etc. What they do is to relax the NP hard rank minimization problem 
with their closest convex surrogate the nuclear norm, leading to, 

 2arg min  such that
F NN

W
T WZ W τ− ≤  (5) 

Here the subscript denotes the nuclear norm, defined as the sum of the singular 
values of a matrix.  

This (5) can be efficiently solved by a Split Bregman technique proposed in [15]. It 
introduces a proxy variable Y=Z and solve an augmented Lagrangian by incorporat-
ing a Bregman relaxation variable (B).  

 2 2

,
arg min +

F NN F
W Y

T WZ Y Y Z Bλ µ− + − −  (6) 

The problem (6) can be solved using alternating directions method of multipliers 
(ADMM) leading to the following two sub-problems. The idea is to have sub-
problems that can be solved using stock off-the-shelf algorithms.  

 2 2arg min +
F F

W
T WZ Y W Bµ− − −  (7) 

 2arg min
NN F

Y
Y Y Z Bλ µ+ − −  (8) 

The first sub-problem (7) is a simple least squares problem that is solved using 
conjugate gradient. The second sub-problem can be efficiently updated using singular 
value shrinkage [16, 17]; shown as below  
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This concludes the derivation of the algorithm. There are two stopping criteria for 
the Split Bregman algorithm. Iterations continue till the objective function converges 
(to a local minima). The other stopping criterion is a limit on the maximum number of 
iterations. We have kept it to be 200. 

Our method requires specification of a parameter λ and a hyper-parameter μ. In 
Split Bregman techniques, usually the hyper-parameter is fixed and the parameter is 
tuned. We follow the same routine here; we fix μ=1 and tune λ by the L-curve me-
thod.  

3 Experimental Evaluation 

3.1 Results on Benchmark Classification Datasets 

Our experiments were carried out on some well known databases from the UCI 
Machine Learning repository [18]. Leave-one-out cross validation is used for avoid-
ing variance due to random splits. Also, in order to avoid variations arising out of 
assignment of link weights for the first layer, the same i.i.d Gaussian random projec-
tion matrix (between the input and the hidden layer) is used for all the ELM classifi-
ers.  

Here, we compare with the basic ELM [3] and Sparse ELM [10] with linear and rbf 
kernels. In [10] an empirical analysis showed that for all kinds of ELM, the perfor-
mance saturates when the number of hidden nodes are about 10 times the dimensio-
nality of the vectors. Therefore we follow the same rule-of-thumb in our experiments. 

Table 1. Classification Accuracy on Benhmark Datasets 

Name # 
classes 

Basic ELM Sparse ELM (linear) Sparse ELM (rbf) Proposed 

Page Block 5 96.86 95.32 95.78 96.33 

Abalone 29 24.22 26.49 27.39 28.98 

Segmentation 7 95.87 96.31 97.22 97.22 

Yeast 10 54.32 57.71 57.75 59.00 

German Credit 2 75.88 75.40 76.16 78.43 

Tic-Tac-Toe 2 86.72 85.31 85.31 86.88 

Vehicle 4 72.97 73.46 74.51 77.88 

Australian Cr 2 87.15 86.52 87.14 89.64 



Balance Scale 3 85.52 93.33 94.33 95.33 

Ionosphere 2 91.67 91.67 92.20 94.12 

Liver 2 69.04 69.04 69.04 70.21 

Ecoli 8 80.26 81.26 81.45 83.86 

Glass 7 69.23 69.23 70.19 70.19 

Wine 3 74.69 85.51 85.45 85.45 

Iris 3 92.00 96.00 96.67 98.67 

Lymphography 4 88.64 86.32 86.32 88.81 

Hayes Roth 3 34.85 41.01 43.94 45.38 

Satellite 6 89.73 80.30 83.15 86.22 

Haberman 2 65.22 63.28 63.20 67.78 
 
Experimental results show that our method yields the best results, except in one da-

taset (Wine), where the sparse ELM with linear kernel yields the best results. One 
interesting observation that can be made here is that adding a non-linear kernel to the 
ELM formulation does not help much; one can see that the difference between the 
linear and rbf kernel sparse ELM is not much different (less than 1%). This phenome-
non has been explained before – both random projections and non-linear kernel ran-
domize make the data linearly separable, hence adding one to of the other does not 
change much. It must be noted, this observation is not available in the original paper 
for sparse ELM since they had not compared with linear kernels.  

3.2 Experiments on Face Recognition 

 
Fig. 2. Samples from Extended YaleB 

We follow the experimental protocol outlined in [19]. The experiments are carried 
on the Extended Yale B Face Database. For each subject, we randomly select half of 
the images for training and the other half for testing. Table 2 contains the results for 
face recognition. The features are selected using the simple Eigenface method. Al-
though more sophisticated feature extraction techniques exist, our goal is to investi-
gate that given the feature set how different classifiers perform. To compare our re-
sults with [19], we select the same number of Eigenfaces as proposed there in.  

We do not compare the results with SVM and ANN, since it has already shown in 
[19] that the SRC (sparse representation based classification) outperforms them for 
face recognition problems. We compare our results with basic ELM, and sparse (rbf 
kernel) ELMs as well. As before, in order to avoid variations due to random assign-



ment of the link weights between the input and the hidden layer, the same random 
projection matrix (i.i.d Gaussian) is used for all the different types of ELM classifiers. 

Table 2. Face Recognition 

Method Number of Eigenfaces 

30 56 120 504 

ELM 86.49 91.71 93.87 96.77 

Sparse ELM 86.96 92.05 94.26 97.13 

SRC 89.40 93.37 95.14 97.79 

Proposed 87.11 92.56 95.08 97.25 

 
SRC is a lazy learning classifier; it has no training time but a large testing time 

since it requires solving a sophisticated optimization problem. Our proposed method 
cannot beat SRC but yields better results than the other ELM variants.  

3.3 Experiments on Handritten Digit Recognition 

The MNIST digit classification task is composed of 28x28 images of the 10 
handwritten digits. There are 60,000 training images with 10,000 test images in this 
benchmark. The images are scaled to [0,1] and we do not perform any other pre-
processing. However, we do not carry out experiments on the standard MNIST data-
set; experiments are also carried out on the more challenging variations of the MNIST 
dataset [20]. These were introduced as benchmark deep learning datasets. All these 
datasets have 10,000 training, 2000 validation and 50,000 test samples. The size of 
the image as before is 28x28 and the number of classes are 10. 

 
Dataset Description 

basic-rot Smaller subset of MNIST with random rotations. 

bg-rand Smaller subset of MNIST with uniformly distributed random noise 
background. 

bg-img Smaller subset of MNIST with random image background. 

bg-img-rot Smaller subset of MNIST digits with random background image and 
rotation. 

 
As before we compare our proposed technique with the basic ELM and the sparse 

ELMs with linear and rbf kernels. The results are shown in Table 3. We want to 
eliminate effects arising out of random assignment of link weights in the first layer; in 
order to do so, we use the same random projection matrix (i.i.d Gaussian) for all the 
classifiers.  



From Table 3, as expected, our proposed technique yields significantly better 
results than the others.  

Table 3. Digit Classification 

Dataset ELM Sparse ELM (li-
near) 

Sparse ELM (rbf) Proposed 

basic 92.79 93.16 93.89 95.08 

basic-rot 86.70 87.47 86.70 88.21 

bg-rand 86.06 86.70 90.27 90.94 

bg-img 80.69 80.32 80.69 82.59 

bg-img-rot 52.61 56.24 52.61 54.58 

 

4 Conclusion 

In this work we have proposed a variation for randomized neural network / 
extreme learning machine. Prior variants of the basic technique included kernels and 
sparsity. In sparsity based techniques the redundant connections are pruned; only the 
most relevant ones stay. In this work, our goal is to better mimic the human brain. 
Therefore instead of pruning the connections, we actively promote redundancy in the 
system. This is achieved by modelling redundancy in terms of linear dependency. In 
turn, this leads to a low-rank representation of the matrix containing the link weights 
between the hidden layer and the targets. Following signal processing literature, we 
formulate a nuclear norm regularized ELM problem. Efficient solutions for this 
problem already exist.  

We carry out thorough experimental validation. We validate on 1. benchmark 
machine learning datasets from the UCI Machine Learning Repository; 2. Face 
Recognition (YaleB) and 3. Handrwitten digit recognition (MNIST variations). In all 
the cases, our method outperforms the basic ELM and the sparse ELM (linear and 
rbf).  
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