
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Deep Dictionary Learning vs Deep Belief Network vs

Stacked Autoencoder: An Empirical Analysis

Vanika Singhal, Anupriya Gogna and Angshul Majumdar

Indraprastha Institute of Information Technology, Delhi

vanikas@iiitd.ac.in, anupriyag@iiitd.ac.in and

angshul@iiitd.ac.in

Abstract. A recent work introduced the concept of deep dictionary learning.

The first level is a dictionary learning stage where the inputs are the training da-

ta and the outputs are the dictionary and learned coefficients. In subsequent lev-

els of deep dictionary learning, the learned coefficients from the previous level

acts as inputs. This is an unsupervised representation learning technique. In this

work we empirically compare and contrast with similar deep representation

learning techniques – deep belief network and stacked autoencoder. We delve

into two aspects; the first one is the robustness of the learning tool in the pres-

ence of noise and the second one is the robustness with respect to variations in

the number of training samples. The experiments have been carried out on sev-

eral benchmark datasets. We find that the deep dictionary learning method is

the most robust.

Keywords: deep learning, dictionary learning, classification.

1 Introduction

A typical neural network consists of an input layer where the samples are presented

and an output layer with the targets (see Fig. 1). In between these two is the hidden or

representation layer. If the representation is known, solving the network weights be-

tween the hidden layer and the output is straightforward. Therefore the main chal-

lenge in neural network learning is to learn the network weights between the input

and the hidden layer. This forms the topic of ‘representation learning’.

In
p

u
t

Ta
rg

et

Representation

In
p

u
t

Ta
rg

et

Representation

Fig. 1. Left – Typical neural network. Right – Segregated neural network.

mailto:vanikas@iiitd.ac.in
mailto:angshul@iiitd.ac.in

There are two popular approaches to learn the representation – autoencoder and re-

stricted Botlzmann machine. The architectures are shown in Fig. 2. An autoencoder

learns the encoding and decoding weights between the input and itself – it is self su-

pervised. The Euclidean cost function between the input and the decoded-encoder

version of the input is minimized. This formulation makes the cost function amenable

for gradient based optimization techniques. Usually the standard back propagation

algorithm is used for learning these weights.

In
p

u
t

Representation

O
u

tp
u

t=
In

p
u

t

Encoder Decoder

In
p

u
t

(X
)

R
ep

re
se

n
ta

ti
o

n
 (

Z)

Network D

Fig. 2. Left – autoencoder; Right – restricted Boltzmann machine

As the name suggests, the restricted Boltzmann machine (RBM) minimizes the

Boltzmann cost function. Basically it tries to learn the network weights such that the

similarity (in a probabilistic sense) between the representation and projection of the

input is maximized. The usual limits of probability prevents degenerate solutions. As

there is no output, the standard backpropagation algorithm cannot be used for RBM

training; it is solved using contrastive divergence [1].

For RBM, once it is learnt, the targets are attached to its output, and fine-tuned by

backpropagating errors. This leads to the complete neural network. For the autoen-

coder, after training, the decoder is removed and the target are attached after the en-

coder layer. The complete architecture is fine-tuned to form the neural network.

A single (hidden) layer neural network is relatively easy to train; therefore autoen-

coders or RBMs are hardly used for training such shallow neural networks. Such pre-

training and fine-tuning is usually required for learning deep neural networks. Deeper

architectures can be built by cascading RBMs. Depending on how they are trained,

one can have two slightly different versions – deep Botlzmanm machine (DBM) or

deep belief network (DBN). Once the deep architecture is learnt, the targets are at-

tached to the deepest / final layer and fine-tuned with backpropagation. This com-

pletes the training for the deep neural network.

1W 1

TW

In
p

u
t

O
u

tp
u

t

H
id

d
en

 L
ay

er
 2

H
id

d
en

 L
ay

er
 32W 2

TW

1W 1

TW

In
p

u
t

V
ir

tu
al

 O
u

tp
u

t

Hidden Layer 1/3

In
p

u
t

H
id

d
e

n
 L

ay
e

r
1

V
ir

tu
al

 In
p

u
t

Hidden Layer 2

H
id

d
en

 L
ay

er
 3

V
ir

tu
al

 O
u

tp
u

t

2W 2

TW

Fig. 3. Left – 2 layer stacked autoencoder. Right – Greedy training.

Deeper architectures can also be built using autoencoder. In this case, one autoen-

coder is nested within the other (see Fig. 3). The learning proceeds in a greedy fash-

ion. At first the outermost layers are learnt (see Fig. 3). Once this is complete, the

features from the outermost layer act as inputs to the nested autoencoder. After both

autoencoders are trained, the decoder portion is removed and the targets are attached

to the innermost encoder layer. As before, backpropagation is used to fine-tune the

final neural network architecture.

Deep learning has received a lot of attention from academia and industry; in recent

times deep learning enjoys widespread media coverage. Dictionary learning on the

other hand is popular only in academic circles. In dictionary learning, the objective is

to learn a basis for representing the data. Since dictionary learning requires factorizing

the data matrix into a dictionary and features; in earlier days it used to be called ma-

trix factorization [2]. In recent years it has been popularized by the advent of K-SVD

[3]; in the modern version one learns dictionaries such that the learned features are

sparse.

So far all studies in dictionary learning employ a shallow (single layer) architec-

ture. In a recent work [4], it was shown how deeper architectures can be built from

dictionary learning. Since there is no published work on this topic, we will briefly

introduce it in the following section. The main contribution of this work is to empiri-

cally compare deep dictionary learning (DDL) with SAE and DBN. We will study

how the classification accuracies vary in the presence of noise in the data; and how

they how perform when the training data is limited. The results will be presented in

section 3. The conclusions of this work is discussed in section 4.

2 Deep Dictionary Learning

In dictionary learning one learns a basis / dictionary for expressing the data in

terms of the coefficients. The basic formulation is as follows,

 X DZ (1)

where D is the dictionary, Z are the coefficients and X is the training data (known).

The earliest methods [2, 4] solved the problem by formulating it as,

2

,
min

FD Z
X DZ (2)

This was solved using the method of optimal directions [4] by alternately updating

the dictionary (3) and the coefficients (4).

2

1mink k FD
D X DZ   (3)

2

,
mink k FD Z

Z X D Z  (4)

In recent times, there is a large interest in learning dictionaries with a sparse repre-

sentation [3]. This is formulated as:

2

0,
min s.t.

FD Z
X DZ Z   (5)

As before, solution to (5) proceeds in two stages. The first stage is the dictionary up-

date stage which is the same as (3). The sparse coding stage is expressed as follows,

2

0
min s.t. k FZ

Z X DZ Z    (6)

This is solved using by some greedy algorithm like orthogonal matching pursuit.

In deep dictionary learning, one learns multiple levels of dictionaries. The formula-

tion for two levels is shown (5); it is easy to generalize for more levels.

 1 2X DD Z (7)

One might feel ‘what is the requirement for learning multiple levels, if we can col-

lapse the two levels into a single one as D=D1D2?’. One level dictionary learning (1)

is a bi-linear problem, whereas two level dictionary learning (5) is a tri-linear prob-

lem. These are completely different problems and hence the coefficient obtained from

(1) is not the same as the obtained from (5). Owing to the inherent non (bi / tri) linear-

ity, dictionary learning is non-linear even without the introduction of activation func-

tions. The learning problem for (5) is expressed as:

1 2

2

1 2 0, ,
min s.t.

FD D Z
X DD Z Z   (7)

Solving the tri-linear problem (8) is possible, but has not been studied before. On

the other hand shallow dictionary learning (bi-linear) is a well studied problem. Un-

like other basic building blocks of deep learning (such as autoencoder and RBM),

dictionary learning enjoys several theoretical convergence guarantees [6-9]. There-

fore, instead of solving the deep dictionary learning problem (8) directly, one would

like to convert it single level dictionary learning problem in a greedy fashion. With

the substitution Z1=D1Z (7) can be expressed as,

 1 1X DZ (9)

This boils down to a shallow dictionary learning problem for which there are many

algorithms. In this work, we employ the block co-ordinate descent based techniques

to solve (6). In the second stage, the former substitution leads to,

 1 2Z D Z (9)

This too is a shallow dictionary learning problem with sparsity coefficients. We al-

ready studied the solution for the same. Here we have shown the greedy learning par-

adigm for two levels. One can easily extend it to multiple levels.

2.1 Relationship with Neural network

…
=

x D z

x D z

.

.

.

Fig. 4. Left – Dictionary Learning. Middle – Neural Network interpretation. Right – Deep

Dictionary Learning.

In the traditional interpretation of dictionary learning, it learns a basis (D) for rep-

resenting (Z) the data (X). The columns of D are called ‘atoms’. In [4], they look at

dictionary learning in a different manner. Instead of interpreting the columns as at-

oms, one can think of them as connections between the input and the representation

layer. To showcase the similarity, we have kept the color scheme intact in Fig. 4.

Unlike a neural network which is directed from the input to the representation, the

dictionary learning kind of network points in the other direction – from representation

to the input. This is what is called ‘synthesis dictionary learning’ in signal processing.

The dictionary is learnt so that the features (along with the dictionary) can synthesize

/ generate the data. This establishes the connection between dictionary learning and

neural network kind of representation learning. Building on that, one can build deeper

architectures with dictionary learning. An example of two layer architecture is also

shown in Fig. 4.

3 Experimental Results

3.1 Datasets

We carried our experiments on several benchmarks datasets. These are the full

MNIST dataset and the variations of MNIST; the images are of size 28x28. The full

dataset has 50,000 training images and 10,000 test images. The variations datasets are

more challenging than the more popular MNIST dataset primarily because they have

fewer training samples (12,000) and larger number of test samples (50,000). This

dataset was built for evaluating deep learning algorithms [10]. The variations are –

1. basic (smaller subset of MNIST)

2. basic-rot (smaller subset with random rotations)

3. bg-rand (smaller subset with uniformly distributed noise in background)

4. bg-img (smaller subset with random image background)

5. bg-img-rot (smaller subset with random image background plus rotation)

Comparison was performed between deep dictionary learning (DDL), deep belief

network (DBN) and stacked autoencoder (SAE).

3.2 Evaluating robustness with respect to noise

We evaluate the effects to two types of common additive noise – Gaussian noise

and Impulse noise. We will study how the classification accuracy from different deep

learning tools varies with the addition of noise. For Table 1, 10% (standard deviation)

Gaussian noise has been added both to the training and testing data. For impulse noise

10% of the same samples have been corrupted by 1’s or 0’s.

Here all the representation learning tools are only used for feature extraction. The

classifier used is a nearest neighbor classifier. This is because our objective is to un-

derstand how the feature extraction capacity of different tools vary with the addition

of noise; we had to use the same classifier for all of them. More sophisticated para-

metric classifiers like neural network and support vector machine could also have

been used, but in such tuned techniques it is difficult to gauge how much of the classi-

fication accuracy pertains to the feature extraction capability of the deep learning tool

and how much of the accuracy is ascribed to the tuning of the classifier.

Table 1. Variation of Classification Accuracy with Noise

Name of

Dataset

10% Gaussian Noise 10% Impulse Noise

DDL DBN SAE DDL DBN SAE

MNIST 97.56 97.34 90.86 96.97 96.38 58.01

basic 97.78 96.68 88.18 95.07 91.02 55.09

basic-rot 86.92 29.08 86.28 84.98 37.28 55.50

bg-rand 83.92 85.27 36.74 82.81 83.02 23.03

bg-img 76.68 55.68 70.06 70.94 52.17 52.70

bg-img-rot 68.58 30.43 68.69 68.58 35.51 52.93

The results show that except for one dataset bg-rand which had background noise

in the original data (therefore addition of noise did not change the characteristics of

the dataset), our method always yields the best results. The other deep learning tools –

DBN and SAE are sensitive to noise, in some cases (basic-rot, bg-img-rot) the accura-

cy reduces dramatically; but our proposed method remains fairly robust.

What is interesting to note is that the stacked autoencoder performs fairly well in

the presence of Gaussian noise but not in the presence of impulse noise. This is be-

cause SAE is based on the Euclidean cost function which is optimum for Gaussian

noise; the formulation of DBN is not optimal for any kind of noise and hence suffers

(almost) equally in both cases.

3.3 Evaluating robustness with respect to varying number of training samples

In this sub-section we will see how the accuracy varies when the number of train-

ing samples vary. We test on two cases – full samples and first 66% of training sam-

ples. The samples from each class are randomly distributed therefore each class has

approximately equal distribution in the partial training sets. The first ‘x’ samples were

taken to ensure reproducibility in research.

As before, we use a simple nearest neighbor classifier for these experiments. The

logic remains the same as before. The results are shown in Table 2.

Table 2. Variation of Classification Accuracy with number of Training Samples

Name of

Dataset

12K training samples 8K training samples

DDL DBN SAE DDL DBN SAE

MNIST 97.86 97.62 96.23 97.70 96.11 95.94

basic 97.8 96.98 93.32 95.29 85.35 92.4

basic-rot 90.83 86.92 93.35 87.80 81.86 92.21

bg-rand 89.43 88.89 37.90 87.40 82.77 37.29

bg-img 73.60 61.27 72.91 73.10 51.32 72.17

bg-img-rot 73.58 35.70 69.68 72.26 30.49 61.40

The result show that our proposed technique always yields the best results. The re-

sults are apparently obvious – as the number of training samples decrease there is a

fall in the accuracy. However, what is interesting is that DBN is the worst hit; both

SAE and our proposed DDL are hit by the reduction in the number of training sam-

ples, but the fall in accuracy is small. For DBN the fall in classification accuracy from

is significantly larger.

4 Conclusion

Deep Belief Network (DBN) and Stacked Autoencoders (SAE) are time tested

tools for representation learning. In this work we compare a new deep learning tool –

deep dictionary learning (DDL) with DBN and SAE. There is no published work on

DDL, hence we briefly introduce it. We show how dictionary learning can be inter-

preted as a neural network model. Once the architectural similarity is established we

show how deeper structures can be built by greedy learning – each block requiring

solving the well studied problem of dictionary learning.

This is the first work that pits deep learning tools against each other in two chal-

lenging practical scenarios – noise (Gaussian, Impulse) and reduced number of train-

ing samples. In the presence of noise, we find that the DDL performs better than the

others in all situations (in general). The stacked autoencoder performs well in the

presence of Gaussian noise but is hard hit when the noise is of impulsive nature. The

DBN (which is neither optimally suited for any noise) performs equally bad in both

cases.

When the number of training samples are reduced, all the deep learning tools per-

form worse. However, performance of our proposed DDL and SAE, degrade smooth-

ly. But the accuracy for DBN drastically falls when the number of training samples

reduce.

This work performs an empirical analysis of deep learning tools. At least from em-

pirical analysis on the datasets used in this paper, we conclude that the newly devel-

oped deep dictionary learning method performs considerably better than the others

and should be the preferred choice in such scenarios.

5 References

1. I. Sutskever and T. Tieleman, “On the convergence properties of contrastive divergence”,

AISTATS, 2010.

2. D. D. Lee, and H. S. Seung, “Learning the parts of objects by non-negative matrix factori-

zation”, Nature 401 (6755), pp. 788–791, 1999.

3. R. Rubinstein, A. M. Bruckstein and M. Elad, “Dictionaries for Sparse Representation

Modeling”, Proceedings of the IEEE, Vol. 98 (6); pp. 1045-1057, 2010.

4. S. Tariyal, A. Majumdar, R. Singh and M. Vatsa, “Greedy Deep Dictionary Learning”,

arXiv:1602.00203v1

5. K. Engan, S. Aase and J. Hakon-Husoy, “Method of optimal directions for frame design”,

IEEE ICASSP, 1999.

6. P. Jain, P. Netrapalli and S. Sanghavi, “Low-rank Matrix Completion using Alternating

Minimization”, Symposium on Theory of Computing, 2013.

7. A. Agarwal, A. Anandkumar, P. Jain and P. Netrapalli, “Learning Sparsely Used Over-

complete Dictionaries via Alternating Minimization”, International Conference On Learn-

ing Theory, 2014.

8. D. A. Spielman, H. Wang and J. Wright, “Exact Recovery of Sparsely-Used Dictionaries”,

International Conference On Learning Theory, 2012

9. S. Arora, A. Bhaskara, R. Ge and T. Ma, “More Algorithms for Provable Dictionary

Learning”, arXiv:1401.0579v1

10. A. Courville, J. Bergstra and Y. Bengio, “An Empirical Evaluation of Deep Architectures

on Problems with Many Factors of Variation”, ICML 2007.

