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Abstract.In this work we propose an lp-norm data fidelity constraint for train-
ing the autoencoder. Usually the Euclidean distance is used for this purpose; we 
generalize the l2-norm to the lp-norm; smaller values of p make the problem ro-
bust to outliers. The ensuing optimization problem is solved using the Aug-
mented Lagrangian approach. The proposed lp -norm Autoencoder has been 
tested on benchmark deep learning datasets – MNIST, CIFAR-10 and SVHN. 
We have seen that the proposed robustautoencoder yields better results than the 
standard autoencoder (l2-norm) and deep belief network for all of these prob-
lems. 
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1 Introduction 

An autoencoder learns the analysis and the synthesis weights by minimizing the l2-
norm between the input (training samples) and the output (training samples / cor-
rupted training samples). The l2-norm is perhaps the most widely used data fidelity 
constraint in signal processing and machine learning. It arises from the Gaussian / 
Normal assumption of the distribution which fits a large class of problems in practice. 
But the practical reason behind popularity of the l2-norm stems from the fact that it is 
easy to solve; it is smooth and convex and has a closed form solution (for linear prob-
lems).  

The l2-norm minimization works when the deviations are small – approximately 
Normally distributed; but fail when there are large outliers. In statistics there is a large 
body of literature on robust estimation. The Huber function [1] has been in use for 
more than half a century in this respect. The Huber function is an approximation of 
the more recent absolute distance based measures (l1-norm). Recent studies in robust 
estimation prefer minimizing the l1-norm instead of the Huber function [2]-[4]. The l1-
norm does not bloat the distance between the estimate and the outliers and hence is 
robust.  

The problem with minimizing the l1-norm is computational. However, over the 
years various techniques have been developed. The earliest known method is based on 
Simplex [5]; Iterative Reweighted Least Squares [6] used to be another simple yet 
approximate technique. Other approaches include descent based method introduced 
by [7] and Maximum Likelihood approach [8].  
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In this work, we propose a generalized lp -norm autoencoder, for values of p be-
tween 0 and 1, lp -norm fidelity is robust to outliers; lp -norm is quasi-convex. Unfor-
tunately this makes the problem non-differentiable; hence the standard gradient des-
cent based techniques (e.g. backpropagation) cannot be applied here. One needs to 
solve it using sub-gradients. We invoke a state-of-the-art optimization approach to 
solve the ensuing problem; this is called the variable splitting augmented Lagrangian. 
This reduces our problem to a few simpler sub-problems; one of which needs to be 
solved using sub-gradients while the rest have an analytic solution. We test our pro-
posed approach with standard autoencoder and deep belief network for benchmark 
problems in classification; we show that our results are indeed better.  

The rest of the paper is organized into several sections. Section 2 describes our 
proposed approach. The experimental results are shown in section 3. The conclusion 
of this work is discussed in section 4. 

2 Proposed Robust Autoencoder 

 
Fig. 1. Basic Autoencoder 

An autoencoder consists of two parts (as seen in Figure 1) – the encoder maps the 
input to a latent space, and the decoder maps the latent representation to the data [9, 
10]. For a given input vector (including the bias term) x, the latent space is expressed 
as: 

 ( )h Wxφ=  (1) 

Here the rows of W are the link weights from all the input nodes to the corresponding 
latent node. The activation function is usually non-linear (sigmoid / tanh).  

The decoder portion reverse maps the latent variables to the data space. 

 ' ( )x W Wxφ=  (2) 

Since the data space is assumed to be the space of real numbers, there is no sigmoidal 
function here. 
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During training the problem is to learn the encoding and decoding weights – W and 
W’. In terms of signal processing lingo, W is the analysis operator and W’ is the syn-
thesis operator. These are learnt by minimizing the l2-norm data fidelity constraint: 

 2

, '
arg min ' ( ) F

W W
X W WXφ−  (3) 

Here 1[ | ... | ]NX x x= consists all the training sampled stacked as columns. The 
problem (4) is clearly non-convex. But can be solved by gradient descent techniques 
since the usual activation functionsare smooth and continuously differentiable. 

We do not change the autoencoder architecture. We only change the data fidelity 
constraint from l2-norm to lp-norm. This follows from our discussion on robust esti-
mation. The p-norm is more generic and for values of p between 0 and 1; the estima-
tion is more robust. There is a prior study on denoising autoencoders [11] which add 
noise to samples and then learn a denoising autoencoder; the goal is to learn robust 
encoding and decoding weights. Although intuitive, this study is at best heuristic. The 
robustness arising from our proposed formulation is mathematically and statistically 
optimal. The formulation we propose is: 

 
, '

arg min ' ( ) p
p

W W
X W WXφ−  (4) 

The lp-norm is not differentiable everywhere. Hence gradient based techniques 
cannot be applied. One need to compute sub-gradient. In this work, we propose to 
solve this problem using the Augmented Lagrangian approach.  

First we substitute, ' ( )P X W WXφ= − ; thus converting (4) to the following, 

 
, , '

arg min  such that ' ( )p
p

P W W
P P X W WXφ= −  (5) 

The unconstrained Lagrangian is given by, 

 ( )( )1
, , '

arg min ' ( )T

P W W
P L P X W WXφ+ − −  (6) 

The Lagrangian imposes equality at every step; this is too stringent a requirement 
in practice. One can relax the equality constraint initially and enforce it only during 
convergence. This is the Augmented Lagrangian formulation (7), 

 ( ) 2
1

, , '
arg min ' ( )

FP W W
P P X W WXλ φ+ − −  (7) 

In the next step, we make another substitution ( )Z WXφ=  and write down the 
Augmented Lagrangian for the same. 

 ( ) 2 2
1

, , ',Z
arg min ' ( ) FFP W W

P P X W Z Z WXλ µ φ+ − − + −  (8) 



The problem with the Augmented Lagrangian approach is that, one needs to solve 
the full problem for every value of λ and µ; and keep on increasing them in order to 
enforce equality at convergence – this is time consuming. Besides, increasing the 
values of these hyper-parameters is heuristic. A more elegant approach is to introduce 
Bregman relaxation variables B1 and B2 [12]. 

 ( ) 2 2
1 21

, , ',Z
arg min ' ( ) FFP W W

P P X W Z B Z WX Bλ µ φ+ − − − + − −  (9) 

Although this problem is not completely separable, we can segregate (9) into alter-
nate minimization of the following subproblems.  

 ( ) 2
11P1:arg min '

FP
P P X W Z Bλ+ − − −  (10) 
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2 2P2:arg min ( ) arg min ( )F FW W
Z WX B Z B WXφ φ−− − ≡ − −  (11) 

 ( ) 2
1

'
P3:arg min '

FW
P X W Z B− − −  (12) 

 2
2

Z
P4:arg min ( ) FZ WX Bφ− −  (13) 

Subproblems P2-P4 are simple linear least squares problems. They have analytic 
solutions in the form of pseudo-inverse. Subproblem P1 is an lp-minimization prob-
lem. This too has a closed form solution in the form of modified soft thresholding 
[13], given by.  

 ( ) 1
1 1' max 0, '

2
pP signum X B W Z X B W Z p Pµ − = + − + − − 

 
 (14) 

The last step is to update the Bregman relaxation variables: 

 ( )1 1'B P X W Z B← − − −  (15) 

 2 2( )B Z WX Bφ← − −  (16) 

The problem is non-convex thus there is no guarantee of reaching a global opti-
mum. In this case, we continue the iterations till the objective function does not 
change significantly in subsequent iterations. We also have a cap on the maximum 
number of iterations; we have kept it to be 50. 



3 Experimental Evaluation 

 
Fig. 2.Samples from Datasets. Top – MNIST, Middle – SVHN, Bottom – CIFAR 

To test our formulation we used three datasets, MNIST, Street View House Num-
bers (SVHN) and CIFAR-10. The MNIST dataset is a handwriting recognition dataset 
developed by Y. LeCun et al. using the larger NIST dataset. It has 60,000 images of 
handwritten digits, which were used as training images and 10,000 images were used 
as test images. The SVHN dataset is obtained from Google Street View Images data-
set. It also involves recognition of digits, like the MNIST, however it is significantly 
harder to do so because of clustering of nearby digits and variety of backgrounds. It is 
a real world problem of recognizing the digits from natural scene images. It is a co-
lored images database, with 73,257 images for training, and 26,032 images for test. 
There are also 531,131 simpler training images; however we do not use them. We use 
format 2 of the dataset, which is like the MNIST dataset. The CIFAR-10 dataset was 
compiled by Alex Krizhevsky et al. from the 80 million tiny images dataset. This 
dataset contains 50,000 32x32 training images with 10 classes which are mutually 
exclusive. CIFAR-10 contains images from various categories such as ship, frog, 
truck and more. This dataset contains 10,000 test images. 

Preprocessing 
SVHN. We contrast normalize the Y channel of the YUV images of the dataset and 
use only the Y channel for training and classification. The Y channel is locally con-
trast normalized using a Gaussian neighborhood, with a 7x7 window. This made the 
images look more like the MNIST database. The resultant images reside in a R1024 
space. From figure 3 we see that the Y channel contains the shape information in a 
clear and precise manner as compared to the U and V channels. Figure 3c, shows the 
preprocessed Y channels of the SVHN dataset. We only use the Y channel for train-
ing. The same preprocessing is applied to the test set before the classification step. 

 



(a) 

 
(b) 

 
(b) 

Fig. 3. (a) Y Channels of SVHN, (b) U and V Channels, (c) SVHN Preprocessed Images 

 
CIFAR-10. From each pixel we subtracted the mean of the image for all images in 
the dataset. This suppressed the brightness variation in the image. The resulting image 
is converted to greyscale. This is a very challenging problem as mentioned in [14].  

MNIST. No preprocessing was required on this dataset. 

Results 
We show that by using the lp-autoencoder, we can improve upon the (SAE) stan-

dard autoencoder (l2-norm). The stacked autoencoders (both lp-norm and l2-norm) are 
of three levels; the number of nodes are halved in every successive level.The value of 
p is kept at 1 for the layers. Other combinations of p might yield better results, but we 
did not have time to test these. For the sake of comparison we also employ the deep 
belief network (DBN) for feature extraction; here also the number of nodes is halved 
in every successive.  

We choose to use two non-parametric classifiers KNN and Sparse Representation 
based Classifier (SRC) [15], and a parametric classifier – SVM with RBF kernel. The 
SVM was tuned (via grid search) to yield the best results for proposed lp-autoencoder, 
SAE and DBN. 

Table 1.Classification with KNN (K=1) 

Dataset Proposed SAE DBN 
MNIST 97.44 97.33 97.05 
CIFAR-10 50.01 45.02 48.49 
SVHN 67.23 63.93 65.70 

Table 2.Classification with SRC 

Dataset Proposed SAE DBN 
MNIST 98.36 98.33 88.43 
CIFAR-10 52.37 45.11 46.38 
SVHN 69.90 65.70 66.82 



Table 3.Classification with SVM 

Dataset Proposed SAE DBN 
MNIST 98.64 97.05 88.44 
CIFAR-10 53.29 46.78 48.04 
SVHN 71.19 66.42 68.01 

 
The results show that the proposed stacked lp-autoencoder always yields the best 

results. MNIST is a simple dataset, so the improvement on this dataset is not much. 
But for other datasets the difference between the proposed robust autoencoder and the 
non-robust version is significant. This is evident from the results between stacked 
autoencoder and deep belief network – here the difference in accuracy is marginal – 
between 1% and 1.5%; on the other hand our method improves over these by 4% or 
more. 

4 Conclusion 

In this work we make a fundamental change to the basic autoencoder cost function. 
Instead of using the popular Euclidean norm to learn the encoding and decoding 
weights, we propose employing the lp-norm. For small values of p (less than 1) – this 
makes the autoencoder more robust to outliers.   

Minimizing the lp-norm is more involved compared to the l2-norm; this is because 
unlike the later, lp-norm is not differentiable everywhere and hence gradient based 
techniques cannot be applied directly.  We solve it using variable splitting and Aug-
mented Lagrangian. This segregates the problem into several sub-problems; one of 
which needs to be solved using sub-gradient based techniques while the others have 
simple least squares solutions.  

We carry out experiments on three benchmark deep learning datasets – MNIST, 
CIFAR-10 and SVHN. Three classifiers (KNN, SRC and SVM) were tested upon. In 
all three cases the proposed method yields the best results compared to the standard 
l2-autoencoder and the deep belief network (DBN).  

One may get better results by incorporating convolutional techniques into autoen-
coder [16] and DBN [17]; that is an entirely different direction of research and beat-
ing those results is not the goal of this work. Rather, our goal is to show that by mov-
ing from a non-robust Euclidean norm to a robust lp-norm, one can achieve significant 
improvement in classification accuracy. Our technique does not bar incorporating 
convolutional techniques in our proposed robust framework; we plan to work on this 
topic in the future and expect to achieve further improvement in results.  
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