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ABSTRACT 

 

This paper addresses the recovery of multi-spectral 

images from single sensor cameras using compressed 

sensing (CS) techniques. It is an exploratory work since 

this particular problem has not been addressed before. 

Thus, we do not attempt to 'compete' and 'outperform' any 

prior work. We considered two types of sensor arrays - 

uniform and random; and two recovery approaches - 

Kronecker CS and group-sparse reconstruction. 

Experiments on real multi-spectra images show 

interesting results. 

 

Index Terms— Multi-spectral Imaging, Demosaicing, 

Compressed Sensing. 

1. INTRODUCTION 

Multi-spectral imaging finds usage in a variety of 

applications in scientific, industrial and agricultural 

domains. However, multi-spectral imaging is an 

expensive venture; the cost associated with this imaging 

technique is the main deterrent in its widespread 

application in developing nations. 

To have an idea about the cost of multi-spectral 

imaging consider the five sensor Condor-1000 MS5-

VNN-285 which is a five band camera, with three bands 

as RGB and two bands in the infrared region of 

electromagnetic spectrum. It costs around 59000 dollars 

and the resolution is only 1360 × 1024. The cost of a 

single-sensor RGB camera with an order of magnitude 

more resolution is less than a 1000 dollars. In developing 

countries of south-east Asia, major parts of Africa and 

Latin America, such huge costs associated with multi-

spectral acquisition devices hinder widespread 

applications of this technology. The objective of this work 

is to bring down the cost of such multi-spectral cameras.  

Luckily for RGB cameras, the sensors are based on 

low-cost silicon technology. Till recently, the Moore's law 

for compacting silicon transistors held true, and RGB 

camera manufacturers were able to squeeze in more and 

more sensors per unit area thereby increasing the 

resolution of these cameras to astonishing heights. 

Unfortunately, the silicon sensor technology  does not 

work outside the optical range. Thus multi-spectral sensor 

arrays are expensive and is the  main contributing factor 

for the increased cost of such cameras.  

Most multi-spectral cameras have a separate sensor 

array for each band of the EM-spectrum. Image 

acquisition using such separate sensor arrays requires 

large number of optical and mechanical parts which 

contributes to the increased cost and size of the cameras. 

Owing to such separate sensor arrays, there arises the 

problem of pixel registration.  

In this work we propose a single sensor architecture 

for addressing the issue of cost, size and pixel 

registration. We draw inspiration from single-sensor 

architecture of modern RGB cameras in which only a 

single band is sampled at a particular location of the 

array. To get the full multi-spectral image one will need 

to interpolate the missing (unsampled) pixel values in 

different bands. This is generally referred to as the 

'demosaicing problem'. 

Demosaicing for RGB cameras is almost a solved 

problem [1]. Commercial RGB cameras uses a single 

sensor architecture on the Bayer pattern. The Bayer 

pattern has 50% sensors for the green band, and 25% 

sensors for red and blue bands. Since the Bayer pattern is 

uniform, linear interpolation techniques are quiet 

successful in solving the demosaicing problem. There are 

a handful of studies on the topic of compressed sensing 

(CS) based RGB demosaicing [2-5]. The uniform Bayer 

pattern is theoretical unsuitable for CS recovery; thus they 

propose replacing the traditional Bayer filter array by a 

panchromatic filter array. They show that such a filter 

array is amenable for color CS based demosaicing. The 

prior studies [2-5] are pedagogic exercises with limited  

practicality. Both the camera manufacturers and the 

consumers are satisfied with the current Bayer pattern and 

fast linear interpolation techniques and it is unlikely that 

the existing technology will be discarded. 

The idea of employing single sensor architecture for 

multi-spectral cameras is borrowed from commercial 

RGB cameras. But there are only a handful of studies in 

this area [6-11]. All of them use uniform sampling 

patterns and use linear or kernel methods for 

demosaicing. We will briefly review them in the 

following section.  

In this work we investigate the possibility of using 

uniform and randomized single sensor architecture for 

multi-spectral image acquisition and subsequent 

reconstruction employing CS based techniques. Such an 

investigative study has not been done before. 



The rest of the paper is organized into several 

sections. The review of prior works in multi-spectral 

demosaicing is discussed Section 2. Section 3 proposes 

the CS based reconstruction techniques for uniform and 

randomized sampling patterns. The experimental results 

are discussed in Section 4. Finally the conclusions of the 

work are drawn in Section 5. 

2. LITERATURE REVIEW 

In the Bayer pattern, the Green channel is sampled more 

compared to the red and the blue channels; the logic being 

that the human eye is more receptive towards green 

compared to the other colors. Multi-spectral images are 

not acquired for the human eye; thus the question of 

importance sampling does not arise here. However in [6] 

a multispectral filter array design was proposed based on 

probability  of appearance  of each  band for a target 

recognition problem. This design takes into consideration 

both spatial uniformity and spectral consistency during 

sampling process. Based on above  filter array design, a 

generic demosaicing algorithm is proposed in [7]; this is 

called Binary Tree based Edge Sensing method. This 

method accounts for edge correlations among the multi-

spectral channels while interpolating the missing band 

values.  

However the applicability of the proposed filter array 

is limited. It is tailored for target detection problems. 

Moreover it requires prior knowledge regarding the 

importance of different bands. Even if we assume that this 

prior knowledge is available, the filter array is designed 

for splitting the sampling space in a dyadic scale; thus 

even the splitting is restrictive and cannot handle arbitrary 

prior probabilities. In spite of these shortcomings, in 

practice, this technique [6, 7] yields very good 

demosaicing results. 

The studies [8, 9] attempt to solve a very specific 

demosaicing problem - that of Multi-spectral Color Filter 

Arrays (MFCA). It extends the same basic Bayer CFA 

(that can sample RGB channels) to incorporate two more 

channels - Orange and Cyan. Thus it can sample only 5 

specific channels - Red, Green, Blue and Orange, Cyan. It 

should be noted that this architecture cannot be used for 

acquiring ANY 5 spectral channels.  

In [8] a guided filter is used for demosaicing. The 

guided filter requires reference guide image and uses this 

image to interpolate the various channel images. In [8], 

the guide image is obtained from the most densely 

sampled channel, i.e. the green channel. This technique 

gives good results for their specific problem; but such 

tailored approaches are hard to be generalized. 

In [9], the problem remains the same, but the 

reconstruction algorithm is slightly more generalized. It 

uses a Kernel interpolation method to find estimate the 

missing pixel values in different bands. It yields good 

results for their specific problem. In principle this 

approach can be generalized to arbitrary uniform 

sampling patterns. 

3. BRIEF REVIEW OF COMPRESSED SENSING 

Today Compressed Sensing (CS) is widely understood by 

the signal processing community and a discussion on this 

topic may be redundant; but for the sake of completion we 

briefly review this topic. 

CS studies the recovery of sparse signals from its 

noisy lower dimensional measurements, i.e. solving a 

linear inverse problem of the following form 
2

1 1 1,  (0, )m m n n my M x N         (1) 

Here x is the signal of interest, M is the measurement 

operator and y is the sampled measurement vector. The 

measurement is supposed to be corrupted with Gaussian 

noise. 

Natural signals are almost always never sparse in 

their physical domain, but most of the times they have a 

sparse representation in the transform domain, e.g. natural 

images are sparse in DCT, medical image are sparse in 

wavelet, seismic waves are sparse in curevelet, EEG 

signals are sparse in Gabor, etc. When the transform is an 

orthogonal or tight-frame, it is possible to express (1) in 

the following form, 
Ty M          (2) 

where Ψ is the sparsifying transform and α is the vector of 

sparse transform coefficients. 

One can recover the sparse transform coefficients by 

solving the l1-norm minimization problem.  
2
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        (3) 

where ε is the noise parameter. 

Once α is obtained, the signal of interest can be recovered 

as follows: 
Tx         (4) 

The quality of CS reconstruction depends on two 

factors - i) the sparsity of the solution (α) and the 

incoherence between the measurement (M) and 

sparsifying basis (Ψ) [10]. Intuitively, we can understand 

that, sparser the solution better is the recovery. But the 

incoherence between the two basis should also be 

considered; a sparsity basis which is not incoherent with 

the measurement basis will ultimately lead to poor 

recovery. 

  
       (a)           (b) 

Fig. 1. (a) Random 5-channel Sampling Array; (b) 

Uniform 5-channel Sampling Array 



4. PROPOSED DEMOSAICING METHOD 

Our proposal has two parts: the first is the single array 

design and the second part is the CS recovery algorithms. 

4.1. Filter Arrays 

In the single sensor architecture, at each pixel 

location, only one of the channels is sampled. We propose 

two sampling patterns. The first one is a random sampling 

pattern. The sampling locations of each channel is 

distributed uniformly at random spatially. Fig. 1a. shows 

an example of such a 5-channel array. The design is 

shown in pseudo-colors and can refer to any spectrum 

channel. 

The random array is conducive for CS recovery since 

the measurements are incoherent. The random array is 

easily extendable to any number of channels. This is a 

departure from prior studies [6-9], where the design was 

the array was not generalized and was designed to suit 

particular applications.  

We also propose a uniform filter array. A five 

channel design is shown in Fig. 1b. In theory, such 

uniform sampling patterns are not conducive to  CS 

recovery. But, since this is an exploratory work, we will 

try it nevertheless. The uniform filter design, shown here 

is also extendable to any number of channels. 

4.2. Recovery Method 

The acquisition process from such single sensor 

designs can be expressed as: 

,  1...Ci i iy R x i        (5) 

where C denotes the number of spectral channels 

In multi-spectral imaging, the channels are correlated 

with each other. We intend to exploit the channel 

correlation during reconstruction. 

4.1.1. Group Sparsity 

In prior works [11-14], it was shown that the inter-

channel correlation leads to row-sparsity for the color 

imaging problem. The same logic extends to multi-

spectral imaging. Since the images are correlated, they 

have similar sparsity signature in the transform domain, 

i.e. the positions of the high valued sparse coefficients 

remain the same even the values of the coefficients might 

be different. 

The data acquisition model (5) is modeled as 

following (6), 

,  1...Ci i iy R i         (6) 

This can be succinctly represented in the following 

fashion. 

( )  ( )vec y vec         (7) 

where vec has the usual connotation  1 | ... | Cy y y , 

 1 | ... | C   and ( ),iBlockDiag R i    . 

According to the assumption of same sparsity 

signature, the solution α will be row-sparse. Thus the 

inverse problem (7) can be solved via, 

2
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where 
2,1 2

j

j

   , j  denotes the j
th

 row of α.  

The choice of such values for the l2,1-norms can be 

understood intuitively. The l2-norm over the rows 

enforces non-zero values on all the elements of the row 

vector whereas the summation over the l2-norm enforces 

row-sparsity, i.e. the selection of few rows. Algorithm for 

solving this problem is available in [15]. 

The multi-spectral images are directly sub-sampled in 

the pixel domain; thus in this case, the measurement basis 

(R) is the Dirac / Identity basis. The main concern here is 

the choice of sparsifying transform Ψ. Wavelets lead to 

very sparse representation of natural scenes, but they are 

not very incoherent with the Dirac basis. The Fourier 

basis is maximally incoherent with the Dirac basis, but 

does not lead to a very sparse representation of natural 

scenes. We found that DCT is a good compromise. Since 

it is closely related to the Fourier basis, it is more 

incoherent with the Dirac basis than wavelets and leads to 

sufficiently sparse representations. 

4.1.2. Kronecker Compressed Sensing [16] 

There is yet another way to exploit the inter-channel 

correlation. Since, the channels are correlated, the 

variation at a particular pixel position is smooth along the 

channel. The smoothness leads to a compact 

representation in the Fourier domain. Thus, we can 

sparsify the multi-spectral image by exploiting intra-

channel spatial redundancy and inter-channel correlation 

in the following form, 

 ( )TF vec x       (9) 

where  1 | ... | Cx x x . 

The Kronecker product is a convenient notation to 

represent the operations along column and row directions. 

Since, both Ψ and the Fourier transform are orthogonal, 

(9) can be alternately represented as, 

( ) ( )T Tvec x F  
    (10) 

Thus, we can represent (5) in the following form after 

incorporating the Kronecker product notation, 

( )  ( ) ( )T Tvec y R vec x R F         (11) 

where ( ),iR BlockDiag R i  . 

The sparse transform coefficients can be solved via l1-

norm minimization (3). In this work, we actually use the 

Re-weighted l1-norm [17] to achieve better results using 

the SPGL1 solver [18]. 

With the Kronecker Compressed Sensing (KCS) [16] 

formulation, we employ the Fourier sparsifying basis. 

Although Fourier basis alone does not yield a very sparse 

representation for each channel of the multi-spectral 

image, the Kronecker Fourier basis sufficiently sparsifies 

the full multi-spectral image. Also, the Fourier basis is an 

ideal choice in this scenario since it is maximally 

incoherent with the Dirac measurement basis. 



5. EXPERIMENTAL EVALUATION 

The experimental results were carried out on a well 

known multi-spectral imaging dataset [19]. The 

experiments were carried out on the four images - 

Balloon, Beads, Cloth and Flowers. The color image 

versions of these images are shown in Fig. 3. 

 
Fig. 3. Left to Right - Balloon, Beads, Cloth and Flowers. 

We carried out experiments for 3-channel and 4-

channel reconstruction. We chose the first 3 and 4 

channels respectively for this purpose. The accuracy for 

demosaicing is evaluated based on PSNR values between 

the original and the reconstructed. The results for 3-

channel and 4-channel image demosaicing are shown in 

Tables 1 and 2 respectively. For random sampling, the 

sampling array was simulated 100 times for each 

experiment. The average recovery results are shown here. 

This needed to be done so as to get robust results. 

Table 1. PSNR for 3-channel Reconstruction 
Datasets Random Pattern Uniform Pattern 

KCS Group-

sparse 

KCS Group-

sparse 

Balloon 38.18 38.05 39.04 31.01 

Beads 28.78 25.78 29.7 22.74 

Cloth 27.59 26.1 28.76 24.37 

Flowers 32.85 32.48 33.14 28.43 

Table 2. PSNR for 4-channel Reconstruction 
Datasets Random Pattern Uniform Pattern 

KCS Group-

sparse 

KCS Group-

sparse 

Balloon 37.21 35.82 34.34 13.88 

Beads 24.54 22.91 25.25 15.96 

Cloth 26.5 25.04 27.63 14.5 

Flowers 31.33 30.25 28.27 18.3 

 

The following conclusions can be drawn: 

1. The demosaicing accuracy decreases as the number 

of channels increase - this is obvious. Since the 

sampling ratio decreases (1:4 from 1:3) with 

increasing number of  channels; the recovery 

becomes progressively harder. 

2. The KCS reconstruction always yields better 

reconstruction than group-sparse reconstruction. The 

difference between the two becomes more 

pronounced as the sampling ratio decreases. 

3. The surprising observation is that, when the sampling 

ratio is relatively high (1:3), the uniform sampling 

array yields better results random sampling array for 

KCS reconstruction, but when the sampling ratio falls 

(1:4), the random array yields better results. This is 

not a fluke, since we simulated 100 random sampling 

masks for each experiment. 

4. For group-sparse reconstruction, random array 

always yields better results than uniform arrays. 

5. As the sampling ratio falls (from 1:3 to 1:4), group-

sparse reconstruction for uniform sampling arrays 

yields very poor recovery. 

  

                     

 

 

 Fig. 4. Channel 2 - Original and Reconstructed 

 

The original and reconstructed images of Channel 2 

for 3-channel reconstruction is shown in Fig. 4. It can be 

seen that the 'Random KCS', 'Uniform KCS', 'Random 

group-sparse' almost yields similar reconstruction; there 

are nominal reconstruction artifacts. But 'Uniform group-

sparse' reconstruction yields severe artifacts as has been 

outlined in the figure. The qualitative results corroborate 

the findings in Tables 1 and 2. 

5. CONCLUSION 

This is the first work that explores the problem of 

compressed sensing (CS) reconstruction of multi-spectral 

images acquired with a single sensor architecture. We 

propose two filter array designs - random and uniform. 

Both of them can be generalized to any number of 

channels. For reconstruction we propose two approaches; 

both of these exploit the inter-channel correlations while 

reconstruction. The first approach models the problem as 

a group-sparse optimization while the second approach 

proposed is a Kronecker CS formulation. 

We believe in reproducible research. The code for 

reproducing the results is available at [20]. 

Original 

Random KCS Uniform KCS 

Random group-sparse Uniform group-sparse 
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