MIXED GAUSSIAN AND IMPULSE DENOISING OF HYPERSPECTRAL IMAGES

Hemant Kumar Aggarwal and Angshul Majumdar

Indraprastha Institute of Information Technology-Delhi, India

ABSTRACT

Hyperspectral image denoising is an important preprocess-
ing step in the analysis of hyperspectral images in several
applicaitons domains. These images often gets corrupted by
various kinds of noise during acquisition process. There are
several studies on reducing Gaussian noise from hyperspec-
tral images. This work addresses the problem of reducing
mixed noise from hyperspectral images; in particular a mix-
ture of Gaussian and impulse noise has been considered.
The proposed image acquisition model explicitly accounts
for both Gaussian and impulse noise as additive noise. This
mixed noise reduction problem has been formulated as syn-
thesis prior optimization problem which exploits inherent
spatio-spectral correlation present in hyperspectral images.
Split-Bregman based approach has been utilized to solve re-
sulting optimization problem. Experiements were conducted
using both synthetic noise as well as real noisy hyperspec-
tral images. Experimental results have been quantified using
peak signal to noise ratio (PSNR) and structural similarity
index (SSIM). A comparative study with an existing low-rank
based image denoising approaches has also been carried out.
Both quantitative and qualitative results suggest the superior-
ity of proposed approach.

Index Terms— Gaussian noise, Impulse Noise, Hyper-
spectral Images, Split-Bregman

1. INTRODUCTION

Images captured over hundreds of bands of electromagnetic
spectra ranging from around 400 nm to 2500 nm are generally
termed as hyperspectral images. These images are useful in
various application domains such as agriculture, forensics,
resource management, environmental monitoring etc. Most
of the applications requires denoising as a pre-processing
step. Images are corrupted by noise due to several reasons
including fluctuations in power supply, dark current, and non-
uniformity of detector response etc. The corruption model
can be represented as a mixture of Gaussian and Impulse
noise [1, 2].

Hyperspectral denoising for Gaussian noise is a well stud-
ied problem [3, 4, 5]. The approach [3] applies principle com-
ponent analysis on each band and then do wavelet shrinkage
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only on the low energy principle component bands and keep
top few principle component bands intact. The work [4] uti-
lizes adaptive total variation based approach to denoise the
hyperspectral image. The low rank structure of hyperspec-
tral images has been exploited in [S]. Hyperspectral unmix-
ing based denoising approach has been proposed in [6]. To
the best of our knowledge there is no prior work on remov-
ing impulse noise from hyperspectral images (though there is
plethora of work on impulse denoising of grayscale images).
In this paper we propose to remove both Gaussian and im-
pulse noise from a hyperspectral image. This is a mixed noise
reduction problem. There are studies such as [1, 2] which
consider mixed noise reduction from gray scale images how-
ever this work address the problem of denoising hyperspectral
images.

We exploit the spatio-spectral correlation of the hyper-
spectral datacube for denoising. The formulation is loosely
based on the concept of Kronecker compressed sensing [7].
The spatial correlation exists since in most satellite images
nearby objects or areas are similart to each other due to which
neighboring pixels have quite similar intensity value. The
spectral correlation exists in hyperspectral images since the
band gap in captured bands is very low. The band gap is
between neighboring bands is generally in range of 5 nm to
10 nm. We have utilized 2D discrete cosine transform (DCT)
to sparsify the image along spatial dimension and 1D-DCT
to sparsify the image along spectral dimension. We have for-
mulated the mixed (additive Gaussian and Impulse) denoising
problem as a synthesis prior problem and solved the resulting
optimization problem using split-Bregman approach [8]. We
have also compared our technique with an existing low rank
matrix recovery (LRMR) [5] based algorithm. Peak signal to
noise ratio (PSNR) and structural similarity index (SSIM) [9]
are used to quantify the denoising results. Experimental re-
sults indicate that our proposed method is about 4.5 dB better
in PSNR and 40% better in SSIM compared to existing tech-
nique [5] for a mixture of Gaussian and impulse noise.

2. PROBLEM FORMULATION

Define y = vec(Y') as vector representation of any 2D matrix
obtained by vertical stacking of columns of matrix Y.We use
small letters for vectors and capital letters for matrices. A hy-
perspectral data cube of dimension m x n x d having d spectral



bands in it can be represented as X = [z1 2 ... 4]
where each z; € R™"*! is a spectral band obtained by ver-
tical concatenation. Using these notations, image acquisition
model in the presence of Gaussian and impulse noise can be
expressed as:

Y =X+ N+ Ny,

where X € R™"*4 ig original image, Y is noise corrupted
image, V7 is Gaussian noise, and N, is impulse noise. Each
columns of X is an image and hence can be sparsely rep-
resented in transforms like wavelet or DCT. Since different
bands in a hyperspectral image are spectrally correlated, the
variation along the rows of X can also be sparsely repre-
sented. The spatio-spectral correlation can be jointly ex-
ploited by representing the datacube X as a sparse signal Z
in a combined transform domain such that Z7 = D; X Ds.
Here D, is a 2-D transform applied along spatial dimension,
and D- is 1-D transform applied on spectral dimension. If
the sparsifying transform domain is orthogonal or tight-frame
(wavelet, DCT etc.) then we can express it in the synthesis
prior form as X = DI ZDI'. Using the synthesis prior (SP)
formulation, the denoising problem can be framed as:

win 2] + [Nz + MY = DY ZDE — Naff3 (1)
»4V2

where A is a regularization parameter. Here ¢;-norm of Z is
minimized since Z is a sparse representation of the hyper-
spectral image in the transform domain, ¢;-norm of N5 is
minimized because N, is representing impulse noise which
is a sparse in nature. Since /V; is Gaussian noise and N; =
Y — X — N, therefore we are minimizing Frobenius norm of
Y — DT ZD¥ — N, to reduce Gaussian noise. Although re-
searchers have proposed generic noise removal techniques [5,
3], such an explicit formulation for jointly denoising Gaus-
sian and impulse noise has not been attempted before. This
is a new problem and we are not aware of any efficient al-
gorithm that can solve the aforesaid problem. Therefore in
the next section we describe how to solve this problem using
split-Bregman [8] based approach.

3. PROPOSED ALGORITHMS

This section discusses how to solve (1) using split-Bregman
approach. This approach had been very successful in solving
multiple penalty optimization problems [10, 11]. We repeat
synthesis prior problem for the sake of convenience.

win | 7 + | Nolls + AIY — DY ZDT — N3
»4V2

Since the variable Z is not separable, we substitute P = Z
and Q = N such that above problem can be rewritten as an
unconstrained optimization problem :

. A
minimize [Pl + [ Qll: + 5V — DY ZD3 — Nol|%

m

+ 5P -2 =B} + B1Q - N2 - Ball3

where A\, (1, po are regularization parameters and By, Bs
are Bregman variables. Since there are multiple regulariza-
tion terms, we intent to follow the split-Bregman [8] ap-
proach which can be applied to solve this problem. Thus
the above unconstrained problem can be split into following
sub-problems as:

A
P1: mZinEHY—DfZDQT—N2||%+%HP—Z—31H%
P2: min|Pll+ 5P -2 - Bil}
P3: min[[Q + 5 1Q ~ No — Bal;

A
P4 : HJ{ImEHY—D{ZDg—Nzn%‘F%HQ—Nz—B2H%
2

Here subproblems P1 and P4 are least square problems with
analytic solutions:

1

Z= X+ (DT(Y = N2) + (P — By))
1

Ny = ye—s (AY = DZ) + p2(Q — By))

Subproblems P2 and P3 are of the form :

argmin [ly — |3 + All[l
x

which can be solved by using soft-thresholding [12] Soft Th(y, \)
operation:

& = sign(y) x max {0, ly| — ;} 2)

Algorithm 1 summaries the steps of the proposed synthesis
prior approach.

Algorithm 1 Synthesis Prior (SP) Algorithm

1: Input: DlA’ Dy, D= Dy ® D?, Y, ) 1, 2, Iter.
2: Output: X, denoised image.

3: for £ =1toIter do

4 7M1= o (DT(Y = N§) + i (P* — BY))

5. Pkl — SoftTh (Z’f+1 + Bk l)

1w
6 Q' =SoftTh <N2k+1 + B, %)
k 7 Pl v
R

3: B{C+1 _ Bf . Pk+1 + Zk:+1
9: B§+1 _ B§ + N2k+1 _ Qk+1
10: end for

1: X = DY z*1pT




4. EXPERIMENTS AND RESULTS

Experiments were performed using two hyperspectral datasets.

The first hyperspectral image was of Washington DC (WDC)
mall [13] from Hyperspectral Digital Imagery Collection Ex-
periment (HYDICE) sensor having 1m spatial resolution and
10-nm band spacing covering spectral range of 400-2500 nm.
We considered a patch of size 256 x 256 x 191 from WDC
image for experiments. Second image was of Gulf of Mexico
area [14] from SpecTIR having 2m-spatial resolution and 5-
nm band spacing covering spectral range of 395-2450-nm. A
patch of size 256 x 256 x 360 was considered for performing
experiments.

The proposed algorithm is compared with an existing low
rank matrix recovery based algorithm LRMR [5]; this tech-
nique was developed to solve generic hyperspectral denois-
ing problems. It explores low-rank nature of a hyperspec-
tral image for denoising. During experiments we considered
images from all the spectral bands. In the previous studies
like LRMR [5] extremely noise bands were not considered in
experiments; skipping over noisy bands defeats the purpose
of denoising.

We utilized 3D-DCT as sparsifying transform in the pro-
posed synthesis prior algorithm, i.e. 2D-DCT to sparsify each
spectral band image and 1D-DCT to sparsify across the spec-
tral bands. All the unknown variables (Z,N5,P, ), By, Bs)
required by our algorithm were initialized to zero. All three
parameters (A = 0.5, 41 = 1, us = 1) were found empiri-
cally. Parameters for the LRMR algorithm (rank=10 and spar-
sity=4000) were set to yield the best results as described in the
paper [5].

Experiments were performed with both synthetically
added noise as well as real noisy bands in raw hyperspectral
images. For the case of synthetic noise, all the bands were
corrupted by mixture of Gaussian noise with standard devia-
tion 20 and 30 as well as 10% to 50% impulse noise. Table 1
summarizes comparison of PSNR and SSIM values for the
proposed algorithm(SP) and benchmark technique LRMR. It
can be observed from Table 1 that in all experiments proposed
technique outperform existing LRMR approach.

Figure 1 visually compare quality of restoration of pro-
posed method with the existing LRMR technique for syn-
thetic noise case. Gaussian noise of standard deviation 20 and
30% impulse noise was added to the image. It can be observed
from the denoised images that proposed approach has signifi-
cantly reduced the noise whereas with LRMR approach some
smoothing effect is visible. The images are shown in false
color composite of bands 20, 90, 190 for WDC image. His-
togram equilizatiaon was applied on all the images for visual
display only.

Experiments were also performed with real noisy hyper-
spectral images. Figure 2 shows denoised Gulf image with
bands 40, 130, 220 in false color composite. It can be ob-
served tha original Gulf image is a noisy having different

Table 1: Comparison of PSNR and SSIM values for the ex-
isting LRMR and proposed synthesis prior (SP) algorithm.

WDC image
PSNR(dB) SSIM
Noise  Noisy LRMR Sp Noisy LRMR  SP
20+10% 14.36 2341 25.08 0.45 0.71 0.8
20+20% 11.71  20.68 23.10 0.32 0.6 0.78
20+30% 10.07 1943 2271 0.23 0.53 0.76
20+40%  8.89 18.11  22.08 0.17 0.44 0.72
20+50%  7.96 16.64 21.16 0.13 0.37 0.66

Gulf of Mexico image

30+10% 1320 2194 24.02 0.25 0.55 0.72
30+20% 10.69  19.51 2349 0.17 0.43 0.70
30+30%  9.11 1726  22.80 0.12 0.36 0.67
30+40%  7.96 16.34  22.18 0.09 0.32 0.63
30+50%  7.04 1474  21.24 0.07 0.26 0.55

kinds of noise. This noisy image was further contaminated
by Gaussian noise of standard deviation 30 and 30% impulse
nosie. In this case also proposed approach gives more visu-
ally appealing results compared to LRMR approach. Visually
it can be observed from Gulf image that not only mixed noise
but also vertical line strips present in original image have been
reduced by our proposed technique. Line striping problem in
satellite images occurs when some sensors are out of radio-
metric calibration.

5. CONCLUSIONS

In this work, we proposed an algorithm to reduce mixed Gaus-
sian and impulse noise from hyperspectral images by explor-
ing inherent spatial and spectral correlation present in these
images. Proposed synthesis prior algorithm is able to achieve
higher PSNR and SSIM values compared to existing algo-
rithm. The visual quality of restored hyperspectral image
by proposed algorithm is better than the sate-of-the-art algo-
rithm. As a future work, we are working to simultaneously
explore sparsity and low rank nature of hyperspectral images
for mixed noise reduction problem.
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Fig. 1: Results on WDC mall image for mixed Gaussian noise of std. dev. 20 and 30% impulse noise.
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(a) Original Gulf image (b) Noisy, PSNR=9.11 dB
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(d) SP, PSNR=22.80 dB

Fig. 2: Results on Gulf of Mexico image for mixed Gaussian noise of std. dev. 30 and 30% impulse noise.
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