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Abstract

This paper proposes a technique for reducing impulse noise
from corrupted hyperspectral images. We exploit the spatio-
spectral correlation present in hyperspectral images to spar-
sify the datacube. Since impulse noise is sparse, denoising is
framed as an L1-norm regularized L1-norm data fidelity mini-
mization problem. We derive an efficient split Bregman based
algorithm to solve the same. Experiments on real datasets
show that our proposed technique yields better results than
state-of-the-art denoising algorithms compared against.

keywords Impulse noise, Total variation, Split-Bregman

1 Introduction

Images captured at high spectral resolution mostly from
≈400 nm to 2500 nm range of electromagnetic spectrum are
generally referred as hyperspectral images. These images gen-
erally have more than 100 spectral bands with very narrow
spectral gaps. Owing to the narrow gaps, the images exhibit
high spectral correlation. Random fluctuations in the power
supply of satellite’s sensor often corrupts these images by ran-
dom valued impulse noise. Impulse noise can also arise when
response of the sensor is saturated or when the sensor fails to
sample. The fact that hyperspectral images are corrupted by
impulse noise is relatively new [1, 2, 3]; all the references re-
garding impulse noise in hyperspectral images are from the last
two years. Fig 1 shows an example image from Gulf dataset [4]
having high valued impulse noise (white spots). Usually im-
pulse noise is not the only kind of noise corrupting hyperspec-
tral images, Gaussian noise is also present. However, Gaussian
denoising is a widely addressed problem [1, 2]. But there have
been no prior studies on impulse denoising from hyperspectral
images. Therefore this problem of reducing impulse noise from
hyperspectral images has been addressed in this work. There
are two broad approaches to solve this problem. The first ap-
proach is to use median filtering and its variants [5, 6, 7, 8].
The other approach is to exploit the sparsity of the image in
some transform domain and formulate denoising as an opti-
mization problem.

Let x be original gray-scale image and y be noise corrupted
image then impulse denoising problem can be expressed as
ℓ1-norm minimizing sparse recovery problem:

min
z

‖y −DT z‖1 + λ‖z‖1, (1)

Figure 1: Band 180 of Gulf image. White spots corresponds
to impulse noise.

where z is the sparse representation of image x in orthogonal
sparsifying transform domain D such that z = Dx. This for-
mulation is called the synthesis prior (SP) problem; here the
sparse transform coefficients are recovered from which the im-
age is synthesized. Here in Eq. (1) ℓ1-norm of data fidelity
term is minimized owing to the fact that impulse noise is
sparse. Algorithms such as [9, 10, 11] have been proposed
in past to solve this problem.
Another widely used approach for image denoising is total

variation (TV) regularization[12] which can be represented as
follows:

‖y − x‖1 + ‖Dhx‖1 + ‖Dvx‖1, (2)

where Dh, Dv are horizontal and vertical finite difference op-
erators. Several algorithms such as [13, 14, 15, 16] have been
proposed in literature to solve TV based impulse denoising
problem. This formulation is referred to as analysis prior (AP)
problem.
All these studies are restricted to single channel denoising;

for our problem these methods have to be applied separately
on each band of a hyperspectral image which does not account
for inter-band correlation present in hyperspectral images.

Prior works in Gaussian noise removal from multi-band im-
ages have shown that exploiting the spectral correlation (along
with spatial intra-band correlation) improves denoising per-
formance. For example, there are TV based algorithms for
color image denoising such as ColorTV[17], and MSBEL[18].
These algorithms are mainly designed for denoising of three
channel color images. Algorithms have also been proposed
for hyperspectral denoising based on spatial-spectral adaptive
TV [1],spatial-spectral fusion technique [2] and spectral statis-
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tics [19] based technique but these algorithms are designed for
Gaussian noise reduction.
It has been shown previously in [20, 21] that exploiting

spatio-spectral correlation leads to better reconstruction in
compressive hyperspectral imaging. Following these studies
we propose to exploit the inter-band spectral correlation and
intra-band spatial correlation for denoising hyperspectral im-
ages corrupted by impulse noise. As the noise is sparse, we
minimize ℓ1-norm of data fidelity term. The spatio-spectral
correlation leads to a sparse representation of the hyperspec-
tral datacube in certain transform domains; the transform do-
main sparsity leads to ℓ1-norm regularization of the ℓ1-norm
data fidelity. To the best of our knowledge there is no pub-
lished work on denoising impulse noise corrupted hyperspec-
tral images which utilizes both spatial redundancy and spec-
tral correlation. We derive an efficient split-Bregman[22, 13]
based algorithm to solve this problem.
In this work, we have explored two different models namely

synthesis prior and analysis prior and experimentally found
that synthesis prior model yields better results than analysis
prior model. It is difficult to tell analytically why one method
is better than the other. There are prior works related to
Magnetic Resonance Imaging [23, 24, 25] where it was found
that analysis prior yields better results.

2 Problem Formulation

A hyperspectral data cube of dimension m × n × d hav-
ing d spectral bands in it can be represented as X =
[

x1 x2 . . . xd

]

where each xi ∈ R
mn×1 is a spectral band

obtained by vertical concatenation. Define y = vec(Y ) as
vector representation of any 2D matrix obtained by vertical
stacking of columns of matrix Y , and Y = mat(y) as its re-
verse operation. We use small letters for vectors and capital
letters for matrices. Using these notations, image acquisition
model can be expressed as:

Y = X +N,

where X is original image, Y is noise corrupted image, and N

is the noise.
The columns of X are images and hence have a sparse repre-

sentation in transform domains like wavelet or finite difference.
Since the images are spectrally correlated, the variation along
the rows of X can be assumed to be smooth leading to a sparse
representation in Fourier, wavelet or finite differencing. The
spatio-spectral correlation can be jointly exploited by repre-
senting the datacube as a sparse signal: Z = D1XD2. Here
D1, D2 are sparsifying transforms along spatial and spectral
dimensions respectively and Z denotes the sparse transform
coefficients. Using this sparse signal representation, denoising
problem can be framed as:

min
Z

‖Y −DT
1 ZDT

2 ‖1 + λ‖Z‖1, (3)

where λ is a regularization parameter. This is the general
synthesis prior (GSP) formulation. For framing the analysis
prior problem we model the images to be piecewise smooth and
employ finite differencing to sparsify along the spatial dimen-
sion. Along the spectral dimension we employ an orthogonal

sparsifying transform D. Using this, we get following general
analysis prior (GAP) formulation:

min
X

‖Y −X‖1 + λ‖DhXD‖1 + λ‖DvXD‖1, (4)

where Dh, Dv are horizontal and vertical finite difference op-
erators and λ is the regularization term.
For grayscale images having only one band the sparsifying

transform along spectral dimension will not have any effect.
In that case we get single band synthesis prior formulation of
Eq. (1) as special case of (3) and TV denoising formulation in
Eq. (2) as special case of (4). We are not aware of any efficient
algorithm to solve such large scale problems. Therefore in the
next section we derive algorithms for solving them.

3 Proposed Algorithms

3.1 General Synthesis Prior (GSP) Algorithm

We repeat GSP problem for the sake of convenience.

min
Z

‖Y −DT
1 ZDT

2 ‖1 + λ‖Z‖1, (5)

Since the variable Z is not separable therefore we substitute:
P = Y − DT

1 ZDT
2 and Q = Z then (5) can be rewritten as

constrained optimization problem:

minimize
Z

‖P‖1 + λ‖Q‖1

subject to P = Y −DT
1 ZDT

2

Q = Z

The above constrained optimization problem can be expressed
as unconstrained optimization problem using weak penalty
function as follows:

minimize
Z,P,Q

‖P‖1 + λ‖Q‖1 + µ1‖P − Y +DT
1 ZDT

2 ‖
2
F

+ µ2‖Q− Z‖2F

where µ1 and µ2 are the regularization parameters and ‖ · ‖F
represents Frobenius norm of a matrix. Since there are multi-
ple regularization terms therefore split-Bregman [13] approach
can be applied to solve this problem. Thus the above uncon-
strained problem can be expressed as:

minimize
Z,P,Q

‖P‖1 + λ‖Q‖1 + µ1‖P − Y +DT
1 ZDT

2 −Bk
1‖

2
F

+ µ2‖Q− Z −Bk
2‖

2
F

where Bregman variables B1 and B2 are updated iteratively
as follows:

Bk+1

1 = Bk
1 + Y − P −DT

1 ZDT
2

Bk+1

2 = Bk
2 + Z −Q

The above problem has three separable variables (Z,P,Q) and
therefore we can split the problem in three simple subprob-
lems. Let A ⊗ B denote the Kronecker product between ma-
trices A ∈ R

m×n and B ∈ R
p×q defined as:

A⊗B =











a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...
am1B am2B. . . amnB











mp×nq
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Let y1 = vec(P − Y −Bk
1 ), y2 = vec(Q−Bk

2 ), D = D2 ⊗DT
1

then sub-problems can be expressed as follows:

P1 : min
z

µ1‖y1 +Dz‖22 + µ2‖y2 − z‖22

P2 : min
p

‖p‖1 + µ1‖p− y − bk1 +Dz‖22

P3 : min
q

‖q‖1 + µ2‖q − z − bk2‖
2
2.

Here we used the identity that Y = AXB can be written
as y = (BT ⊗ A)x. Above problem P1 is differentiable and
convex whose solution we can obtain by solving

(µ1D
TD + µ2I)z = µ2y2 − µ1D

T y1,

iterativly using least square solvers. In case D1 and D2 are
orthogonal transform we can simplify DTD as follows:

DTD = (DT
2 ⊗D1)(D2 ⊗DT

1 ) = DT
2 D2 ⊗D1D

T
1 = I,

which gives a closed form solution for problem P1 as:

z =
µ2

µ1 + µ2

y2 −
µ1

µ1 + µ2

DT y1, (6)

Problems P2 and P3 are ℓ1-norm minimization problems in
the following form:

argmin
x

‖y − x‖22 + λ‖x‖1, (7)

which can be solved by using soft-thresholding SoftTh(y, λ)
operation: x̂ = sign(y)×max

{

0, |y| − λ
2

}

. Algorithm 1 sum-
maries the steps of the proposed GSP algorithm.

Algorithm 1 General Synthesis Prior (GSP) Algorithm

1: input: D1, D2, D = D2 ⊗DT
1 , Y , λ, µ1, µ2, MaxIter.

2: output: X̂, denoised image.
3: for k = 1 to MaxIter do
4: Zk+1 = mat(zk) from (6)

5: P k+1 = SoftTh
(

Y +Bk
1 −mat(Dz), 1

µ1

)

6: Qk+1 = SoftTh
(

Z +Bk
2 ,

λ
µ2

)

7: Bk+1

1 = Bk
1 − P k+1 + Y −D1Z

k+1D2

8: Bk+1

2 = Bk
2 + Zk+1 −Qk+1

9: end for
10: X̂ = DT

1 Z
k+1DT

2

3.2 General Analysis Prior (GAP) Algorithm

We rewrite GAP formulation from previous section:

argmin
X

‖Y −X‖1 + λ‖DhXD‖1 + λ‖DvXD‖1 (8)

As before recast (8) as follows:

minimize
P,Q,R

‖P‖1 + λ‖Q‖1 + λ‖R‖1

subject to P = Y −X

Q = DhXD

R = DvXD

which, using split-Bregman approach can be expressed as:

minimize
X,P,Q,R,S

‖P‖1 + λ‖Q‖1 + λ‖R‖1 + µ1‖P − Y +X −Bk
1‖

2
F

+ µ2‖Q−DhXD −Bk
2‖

2
F + µ2‖R−DvXD −Bk

3‖
2
F

where Bregman variables are updated as :

Bk+1

1 = Bk
1 + Y −X − P

Bk+1

2 = Bk
2 +DhXD −Q

Bk+1

3 = Bk
3 +DvXD −R

Let y1 = vec(P−Y −Bk
1 ), y2 = vec(Q−Bk

2 ), y3 = vec(R−Bk
3 ),

Wh = DT ⊗Dh, Wv = DT ⊗Dv, then above problem can be
split into four separable problems as follows:

P4 :min
x

µ1‖y1 + x‖22 + µ2‖y2 −Whx‖
2
2 + µ2‖y3 −Wvx‖

2
2

P5 :min
P

‖P‖1 + µ1‖Y −X − P +Bk
1‖

2
F

P6 :min
Q

‖Q‖1 + µ2‖Q−DhXD −Bk
2‖

2
F

P7 :min
R

‖R‖1 + µ2‖R−DvXD −Bk
3‖

2
F

Problem P4 is differentiable and after simplification we get :

[µ1I + µ2W ]x = µ2(W
T
h y2 +WT

v y3)− µ1y1 (9)

where W = (WT
h Wh + WT

v Wv), though finite difference op-
erator is not orthogonal but corresponding matrices in (9) is
very sparse because

WT
h Wh = (D ⊗DT

h )(D
T ⊗Dh) = Id ⊗DT

hDh

and similarly WT
v Wv = Id⊗DT

v Dv makes the system of equa-
tions in (9) large and sparse system therefore few iterations
of iterative solver such as LSQR[26] will suffice to approxi-
mate x. Problems (P5), (P6) and (P7) can be solved using
soft-thresholding as described in previously. Algorithm 2 sum-
marizes the GAP algorithm.

Algorithm 2 General Analysis Prior (GAP) Algorithm

1: input: Wh,Wv, Y , λ, µ1, µ2, MaxIter.
2: output: X̂: denoised image.
3: for k = 1 to MaxIter do
4: Xk+1 = mat(x̂), solution from equation (9)

5: P k+1 = SoftTh
(

Y −X +Bk
1 ,

1

µ1

)

6: Qk+1 = SoftTh
(

DhX
k+1D +Bk

2 ,
λ
µ2

)

7: Rk+1 = SoftTh
(

DvX
k+1D −Bk

3 ,
λ
µ2

)

8: Bk+1

1 = Bk
1 + Y − P k+1 −Xk+1

9: Bk+1

2 = Bk
2 +DhX

k+1D −Qk+1

10: Bk+1

3 = Bk
3 +DvX

k+1D −Rk+1

11: end for
12: X̂ = Xk+1.

4 Experiments and Results

Two hyperspectral images were used for performing exper-
iments. First image was of Reno city, NV, USA available
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Table 1: PSNR (dB) values for Reno Image
Salt and Pepper Noise

Noise% Noisy MF PSMF IRN SP AP GSP GAP
10 13.82 34.28 38.18 36.26 31.95 33.73 42.34 38.54
20 11.41 40.07 31.73 35.43 31.42 33.29 41.07 37.69
30 9.21 39.05 26.45 34.15 30.93 32.82 39.82 36.84
40 8.19 33.40 22.00 31.86 30.62 32.34 38.46 35.97
50 7.94 24.80 19.58 32.01 29.18 31.79 36.73 34.98
60 7.03 17.86 16.11 27.50 28.29 31.16 35.12 33.92
70 6.16 12.48 11.37 21.48 27.42 30.24 33.41 32.54

Random Valued Impulse Noise
10 16.98 34.51 33.85 35.96 32.28 34.02 42.82 39.06
20 14.37 33.86 28.63 33.61 32.03 33.74 41.84 38.45
30 13.47 30.70 22.97 27.47 31.52 33.16 40.10 37.46
40 12.90 23.14 18.56 18.68 30.39 31.57 37.03 35.42
50 11.28 16.57 14.93 12.75 26.56 23.91 29.94 28.37
60 10.73 12.74 12.04 9.48 15.44 10.71 11.18 11.23
70 9.74 9.38 9.91 6.64 12.06 5.85 9.80 7.21

from [27]. This image is from High Resolution Imager (HRI)
sensor having 2m spatial resolution and 5 nm band spacing
covering spectral range of 395 to 2450 nm. Second image
was of Washington DC mall available from [28]. This im-
age is of Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE) sensor having 1m spatial resolution and 10-
nm band spacing covering spectral range of 400 to 2500 nm.
We used patchs of size 160× 160× 319 from Reno image and
160× 160× 191 from WDC image for experiments.

For GSP algorithm, orthogonal transform D1 was selected
as 2D Daubechies wavelet with filter length eight for spatial di-
mension. Along spectral dimension 1D Fourier transform was
utilized as sparsifying basis in both GSP and GAP algorithms.
We have empirically chosen the parameters required by our al-
gorithm to yield good results for realistic noisy scenarios. Em-
pirically best parameters for GSP algorithm were found to be
(λ, µ1, µ2,maxiter)=(2, 5, 5, 40) while for GAP best parame-
ters were found to be (λ, µ1, µ2,maxiter)=(2, 2, 2, 50). These
parameters were tuned manually using cross validation. The
tuning was performed so that the algorithms yield good results
for a wide variety of noise levels. Our proposed technique is ro-
bust to large range of noise corruption (upto 50%). A window
size of 5 × 5 was used with median filter. Since IRN algo-
rithm converges in five loops as mentioned in [29] therefore
five loops were used in all experiments.

When input image is of single band then GAP and GSP
algorithms behave as AP and SP algorithms respectively. Ex-
periments were performed with both salt and pepper noise as
well as random valued impulse noise. Original hyperspectral
images were corrupted by 10% to 70% noise to get noisy im-
ages which were then denoised using different algorithms. We
selected median filtering based techniques as well as optimiza-
tion based techniques to compare the proposed algorithms. In
particular, median filter (MF), progressive switching median
filter (PSMF) [30], and iterative re-weighted norm (IRN) [29]
minimization algorithms were selected for comparison. We
have also compared with SP and AP problems which are
solved as special case of GSP and GAP algorithms. Since
all these algorithms were developed for single band therefore
each band was separately denoised by applying the algorithms
iteratively.

Tables 1 shows experimental results on Reno image for
both salt and pepper noise and random valued impulse noise

Table 2: PSNR(dB) values fro WDC image
Salt and Pepper Noise

Noise% Noisy MF PSMF IRN SP AP GSP GAP

10 14.61 38.30 48.03 40.32 36.68 38.21 44.69 41.24
20 11.60 37.95 36.57 39.32 36.05 37.80 43.68 40.50
30 9.84 38.78 28.05 38.15 35.78 37.38 42.62 39.74
40 8.59 35.02 22.12 36.56 36.32 36.91 41.21 38.97
50 7.62 27.42 16.62 34.71 34.52 36.39 40.12 38.08
60 6.83 20.45 13.02 31.24 31.25 35.83 38.49 36.97
70 6.16 15.13 10.62 26.83 27.10 35.19 35.69 35.58

Random Valued Impulse Noise

10 17.91 38.24 31.51 40.11 36.61 38.17 44.56 41.16
20 14.89 37.84 29.37 39.01 35.90 37.69 43.46 40.35
30 13.14 37.33 27.52 37.90 35.17 37.20 42.14 39.48
40 11.89 36.56 25.90 36.59 34.28 36.62 40.57 38.48
50 10.92 35.00 24.23 34.74 33.84 35.98 38.78 37.26
60 10.13 32.01 22.48 32.37 32.85 35.16 36.77 35.82
70 9.46 27.88 21.10 29.44 31.08 34.00 33.95 34.24

while Table 2 shows experimental results for WDC image.
PSNR(dB) was calculated for 10% to 70% noise levels on both
Reno and WDC hyperspectral images. Column titled Noisy

shows PSNR value between noisy and original image. Max-
imum PSNR value is bold faced. We notice that for WDC
image at 10% noise level, PSMF algorithm gives best results
for salt and pepper noise but PSNR decreases for all other
noise levels. There is degradation in PSNR values for large
noise levels (for 60% and more) for Reno image however this
60% and more impulse noise is an unlikely scenario to be en-
countered in practice. Notice that use of sparsifying basis for
spectral dimension has increased PSNR values for both GSP
and GAP algorithms compared to their sequential counter-
parts SP and AP algorithms.

Figure 2 shows qualitative visual comparison of reconstruc-
tion quality for 50% salt and pepper noise on 256× 256× 191
patch of WDC image. Three bands(20, 80, and 170) are
shown in false color with histogram equalization for better
visual quality only. Median filtering and PSMF are not able
to remove high noise in Fig. 2(c) and Fig. 2(d). IRN reduces
noise but image details are not well preserved as shown in
Fig. 2(e). SP algorithm also reduces noise but over-smooths
the image and AP algorithm introduces some blurry effect in
the image. Both GSP and GAP were able to reduce noise
as well as preserve edge information compared to other algo-
rithms. We notice that PSNR need not always be consistent
with visual quality. Visual quality is a subjective evaluation
and depends on the application-whether one wants denoised
but smooth images or sharp but noisy ones. PSNR value is
high if the image is non-noisy even if it is overtly smoothed (as
in our case with synthesis prior Fig. 2(f)); the PSNR values
are low for sharp but noise images, e.g. MF (Fig. 2(c)) and
IRN (Fig. 2(e)).

Figures 3a and 3b shows the convergence plot for our GSP
and GAP algorithms. The objective function does not de-
crease monotonically. But this is expected as our algorithm is
based upon the Split Bregman approach. After 30 iterations
objective functions of both the algorithms does not decrease
significantly hence we can choose number of iterations to be
30 for experimental purpose.
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(a) Original (b) Noisy (c) MF

(d) PSMF (e) IRN (f) SP

(g) AP (h) GSP (i) GAP
Figure 2: Comparison of visual quality of denoising results for
WDC image at 50% salt and pepper noise. Proposed GSP and
GAP algorithms have better quality than other algorithms.
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Figure 3: Convergence graphs for GSP and GAP algorithm
for 50% salt and pepper noise on WDC image.

5 Conclusions

There have been studies to remove impulse noise from
grayscale image and also Gaussian noise from hyperspectral
images. In this work we addressed the problem of removing
impulse noise from hyperspectral images by exploiting spatial
redundancy and spectral correlation. We use two dictionar-
ies to de-correlate hyperspectral datacube in both spatial and
spectral dimensions which results in a very sparse representa-
tion. Our formulation leads to ℓ1-norm regularized ℓ1-norm
data fidelity minimization problem. The problem has been
formulated both as a synthesis prior and an analysis prior
form.

Experiments were carried out on real hyperspectral
datasets. Our technique was compared against recent denois-
ing methods. For almost all cases (except when the image is
corrupted by heavy noise ∼ 70%) our general synthesis prior
technique yields best results.

Our Matlab implementation of both the algorithms are
available at Matlab central [31] for the sake of reproducible
research.
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