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Abstract—Hyperspectral unmixing is the process of estimating
constituent endmembers and their fractional abundances present
at each pixel in a hyperspectral image. A hyperspectral image is
often corrupted by several kinds of noise. This work addresses
the hyperspectral unmixing problem in a general scenario that
consider the presence of mixed noise. The unmixing model explic-
itly takes into account both Gaussian noise and sparse noise. The
unmixing problem has been formulated to exploit joint-sparsity
of abundance maps. A total-variation based regularization has
also been utilized for modeling smoothness of abundance maps.
The split-Bregman technique has been utilized to derive an
algorithm for solving resulting optimization problem. Detailed
experimental results on both synthetic and real hyperspectral
images demonstrate the advantages of proposed technique.

Index Terms—Hyperspectral Unmixing, Joint-Sparsity, Split-
Bregman, Total Variation, Mixed-noise

I. INTRODUCTION

HYPERSPECTRAL unmixing is a classical, important

and challenging problem in remote sensing. It is a prob-

lem of identifying endmembers and their fractional abundances

present at every pixel in a hyperspectral image. The term

endmember refers to various materials that may be directly

or indirectly present in a hyperspectral image. The term direct

presence refers to the existence of pure pixels and indirect

presence refers to mixed pixels. A pixel in a satellite image

corresponds to an extensive spatial area on earth. This spatial

region constituting that pixel may be covered by a single

object or multiple objects. If the area covered by a pixel

constitutes a single object then such a pixel is called pure

pixel otherwise it is called mixed pixel. The term fractional

abundance indicates the percentage of a particular endmember

present at a pixel. Thus, abundance map shows the distribution

of a particular endmember over a region. The pure pixels have

the fractional abundance of one whereas mixed pixels have

fractional abundance between zero and one.

Hyperspectral unmixing has applications in various domains

such as geology, agriculture [1], environmental studies, biol-

ogy [2], etc. The abundance maps are often used as feature

vectors [3] in several image processing and pattern recognition

related applications of hyperspectral images. Hyperspectral

unmixing is also used in denoising [4], data fusion [5], and

super-resolution [6] related applications.

If a hyperspectral image is of very high resolution, then

its constituent endmembers shall be considered at micro level

such as chemical composition of the pixel. These images
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require the unmixing problem to be handled at the micro

level. However in this work we are interested in the macro

level decomposition of a pixel into its constituent components.

An overview of hyperspectral unmixing algorithms has been

discussed in [7]. This work is based on linear mixing model

for unmixing, however, there are various nonlinear models for

the hyperspectral unmixing whose survey can be found in [8].

There are algorithms such as pixel purity index (PPI) [9]

and N-FINDER [10] which require presence of pure pixels

in the image. However this assumption may not be true

always, and therefore, this work does not depend on this

assumption. Hyperspectral unmixing approaches can also be

categorized as the one that utilizes existing spectral libraries

and others that try to estimate endmember spectral signatures

using non-negative matrix factorization based techniques such

as [11]. This work is based on utilizing existing spectral

libraries available for many materials in different categories

of endmembers such as artificial, minerals, soils, etc.

Often hyperspectral images are corrupted by some kinds

of noise such as Gaussian noise, impulse noise, shot noise,

horizontal or vertical line strips, etc. Gaussian noise mostly

occurs during image acquisition process due to poor lighting,

dark current or sensor noise. Horizontal line strips often occur

in images captured by whisk-broom kind of sensors that have

rotating mirrors perpendicular to the flight direction. Vertical

line strips mostly occur in images captured by push-broom

kind of sensors which capture scene along the flight direction.

Shot noise occurs due to some defective pixels.

It is desirable to do unmixing of hyperspectral images

even when they are corrupted by one or several of these

kinds of noise. This problem of unmixing in the presence of

mixed noise can be approached by firstly applying a denoising

algorithm followed by the unmixing algorithm. This work

directly recovers the abundance map in the presence of mixed

noise. There are studies such as [4], [12] that also perform

unmixing in the presence of noise. This work is different from

these existing methods in terms of both the noise model and

the solution approach.

This work utilizes the noise model proposed in [13] which

was later utilized for denoising in [14]. This model allows us

to formulate the linear hyperspectral unmixing problem that

explicitly account for both Gaussian and sparse noise. The

term sparse noise corresponds to the noise that affects few

pixels in the image. It includes line strips, shot noise as well

as impulse noise. The total number of endmembers available

from different spectral libraries (e.g. the USGS library) are

huge, but only a few of these endmembers are present in a

given hyperspectral image. At every pixel, a subset of the



2

endmembers (present in the whole image) are present This

observation can be modeled as joint-sparse [15] regularization

on abundance maps. Natural images often exhibit high spatial

correlation implying that pixels having the same spectral signa-

ture may be present in the neighborhood. This observation can

be modeled as total-variation [16] regularization on abundance

maps. Thus, this work proposes a hyperspectral unmixing

algorithm that utilize generic noise model and explores both

joint sparsity and spatial smoothness of abundance maps.

The resulting optimization problem is solved using the split-

Bregman [17] based technique. Our work improves over the

state of the art sparse regression based unmixing techniques

sparse regression (SR) [18] and its variants total variation

spatial regularization (SRTV) [19] and collaborative sparse

regression (CLSR) [20].

Section II describes detailed problem formulation followed

by section III where we discuss the technique to solve pro-

posed formulation. Section IV describes experimental results

and section V concludes the paper with some future directions.

II. PROBLEM DESCRIPTION AND FORMULATION

This section describes how linear unmixing problem can

be mathematically formulated as sparse recovery problem

followed by our proposed problem formulation.

A. Notations

Let In represents identity matrix of size n×n. The operation

x = vec(X) represents vectorization operation on matrix X

with columns appended whereas X = mat(x) represents its

inverse operation. A hyperspectral datacube of size m×n× b

can be represented as a matrix of size b × p where b is the

total number of bands and p = m× n is the total number of

pixels in the image. M ∈ R
b×e represents mixing matrix also

called endmember matrix in which each column represents

spectral signature of an endmember. Let ∇ =

(

∇h

∇v

)

be total

variation operator with ∇h and ∇v representing horizontal and

vertical total variation operators respectively with (∇hX)i,j =
Xi,j+1 −Xi,j and (∇vX)i,j = Xi+1,j −Xi,j . The ℓ2,1 norm

of a matrix A ∈ R
M×N is defined as

‖A‖2,1 =

M
∑

i=1

‖a→i ‖2 =

M
∑

i=1

√

√

√

√

N
∑

j=1

a2ij

whereas Frobenius norm and ℓ1 norm of a matrix are defined

as follows

‖A‖2F =
M
∑

i=1

N
∑

j=1

a2ij , ‖A‖1 =
M
∑

i=1

N
∑

j=1

|ai,j |.

B. Problem Description

The linear unmixing problem for a pixel in the presence of

Gaussian noise is represented as constrained linear regression

model:

y = Ma+ n, ‖a‖1 = 1, ai ≥ 0 ∀i (1)

where y ∈ R
b×1 is a pixel vector in b spectral bands, M is

a mixing matrix with e number of endmembers as column

vectors, a ∈ R
e×1 is called abundance vector that represents

the fraction of each endmember used in the formation of

that pixel, and n represents Gaussian noise which accounts

for various external environmental factors. The constraint

‖a‖1 = 1 represents abundance sum-to-one constraint to

ensures that total contribution of each endmember in for-

mation of a pixel is one. As it has been noticed in [7],

[21], [22], all the endmembers present in a real hyperspectral

image may not be available in the spectral library. Therefore,

abundance sum may not be exactly equal to one. Also, if

this constraint of ‖a‖1 = 1 is enforced then formulating

the ℓ1-norm minimization problem on a will be meaningless.

Therefore, this work does not enforce this constraint in the

problem formulation. The abundance non-negativity constraint

represents that contribution can not be negative.

Since mixing matrix is known for hundreds of most com-

monly used materials. Therefore generally e > b and (1) is

an underdetermined system of linear equations. In general, an

underdetermined system has infinite solutions therefore, we

need additional constraints on the variable a to determine it

uniquely. The observation that a pixel is mixture of very few

endmembers as opposed to hundreds of available endmembers

allow us to treat abundance vector a as sparse vector thus

unmixing can be recast as compressed sensing [23], [24]

problem :

min
a

‖y −Ma‖22 subject to ‖a‖0 ≤ k (2)

where k is the sparsity of a i.e. maximum number of non-

zero elements of a. This is an NP-hard [25] problem whose

solution can be approximated using greedy pursuit algorithms

such as OMP [26], StOMP [27], CoSAMP [28], etc. It has

been shown that under certain conditions solution of the NP-

hard problem (2) can be approximated by solving its convex

surrogate ℓ1-norm minimization problem

min
a

‖y −Ma‖22 + λ‖a‖1. (3)

This problem is a convex optimization problem, and various

algorithms have been proposed in literature SPGL1 [29],

FISTA [30], NESTA [31], Bregman Iteration [32], etc., to

solve this problem. The unmixing model in (1) can be extended

for all the pixels as

Y = MA+N, A ≥ 0 (4)

where Y ∈ R
b×p is a matrix with p pixels as column vectors,

A ∈ R
e×p is sparse abundance matrix, N is Gaussian noise.

This unmixing model can be though of as specialization of

image denoising model :

Y = X +N

where X ∈ R
b×p and X = MA is clean hyperspectral image

which imply that unmixing can lead to denoising provided that

mixing matrix is known.
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C. Proposed Formulation

A real hyperspectral images may contain a mixture of

Gaussian and sparse noise therefore, we consider the mixed

noise model for unmixing and account for both types of noise.

The usual unmixing model in (4) can be extended as

Y = MA+ S +G, A ≥ 0 (5)

here S and G represents sparse and Gaussian noise respec-

tively. The above noise model assumes both Gaussian and

sparse noise to be additive noise. Sparse noise accounts for

horizontal or vertical line strips, shot noise and any impulse

noise present in a hyperspectral image. All these kinds of noise

are termed as sparse noise since they corrupt few pixels in a

hyperspectral image. By utilizing this model, we can formulate

the unmixing problem as:

min
A,S

‖Y −MA− S‖2F + λ1‖A‖2,1 + λ2‖S‖1 (6)

Here the first term is data fidelity term that is equivalent to

minimizing the variance of Gaussian noise G = Y −MA−S.

First regularization term is an ℓ2,1-norm minimization term

on abundance matrix A which is also called joint-sparse

regularization term. This term is based on the observation

that in most hyperspectral images, a fewer endmembers are

present compared to the available endmembers. This observa-

tion is mathematically modeled as joint-sparse regularization

on matrix A with few non-zero rows, but each non-zero

row is allowed to be dense. The second regularization term

corresponds to minimizing ℓ1-norm of sparse noise matrix S.

Here ℓ1-norm is minimized due to modeling assumption that

sparse noise affects few pixels in the image.

As an alternative unmixing model, we can also exploit the

fact that most natural images are piece-wise smooth e.g. if

there are some vegetation pixels in the image the nearby

pixels are also likely to be vegetation pixels. Therefore, the

abundance maps can be considered as piece-wise smooth.

The piece-wise smoothness can be modeled as total variation

regularization [16].

min
A,S

||Y −MA− S||2F + λ1||∇AT ||1 + λ2‖S‖1 (7)

Here ∇ is two-dimensional total variation operator that applies

total variation along both horizontal and vertical direction on

a 2D image. The operator ∇ is applied on AT because each

abundance map is along rows of A.

In this work, we propose to simultaneously exploit both the

joint-sparsity as well as spatial smoothness of the abundance

maps in the light of generic noise model. Thus the proposed

hyperspectral unmixing problem formulation can be expressed

as:

min
A,S

||Y −MA−S||2F+λ1||∇AT ||1+λ2‖A‖2,1+λ3‖S‖1 (8)

here λ1, λ2 and λ3 are regularization parameters correspond-

ing to total-variation term, joint-sparsity term, and sparse noise

term respectively. These three models in (6), (7), and (8)

estimates sparse noise S as a byproduct of the proposed

formulations. Let X = MA be the clean image then we

can get denoised image X̂ = MÂ where Â is the estimated

abundance maps by solving (8). Along with generic noise

model (5), we have exploited both joint-sparsity as well as

piecewise-smoothness of abundance maps. We are not aware

of any efficient algorithm to solve (8) therefore in the next

section we briefly describe how to solve this problem using

the split-Bregman [17] based technique.

III. PROPOSED ALGORITHM

This section describes how the split-Bregman [17] approach

can be utilized to derive the algorithm for solving (8). The

split-Bregman approach is suitable to solve (8) because it has

been designed to handle multiple regularization terms.

The variable A is not separable in (8) therefore we utilize

auxiliary variables P and Q to make the problem separable.

Set P = ∇AT and Q = A, then we get following constrained

problem:

minimize
A,S,P,Q

‖Y −MA− S‖2F + λ1‖P‖1 + λ2‖Q‖2,1 + λ3‖S‖1

subject to P = ∇AT

Q = A

This problem can be re-written into unconstrained form by

using two Bregman variables B1 and B2 to get

minimize
A,S,P,Q

‖Y −MA−S‖2F+λ1‖P‖1+λ2‖Q‖2,1+λ3‖S‖1

+ µ1‖P −∇AT −B1‖
2
F + µ2‖Q− A−B2‖

2
F

where B1 and B2 are updated as:

B1 =B1 +∇AT − P

B2 =B2 +A−Q

Above problem is separable in each variable therefore can be

written into following subproblems as

P1 : min
P

µ1‖P −∇AT −B1‖
2
F + λ1‖P‖1

P2 : min
Q

µ2‖Q−A−B2‖
2
F + λ2‖Q‖2,1

P3 : min
S

‖Y −MA− S‖2F + λ3‖S‖1

P4 : min
A

‖Y −MA− S‖2F + µ1‖P −∇AT −B1‖
2
F

+ µ1‖Q−A−B2‖
2
F

each of these problems can be solved iteratively by using

Bregman iteration with Bregman variables updated in kth

iteration as

Bk+1
1 = Bk

1 +∇(Ak)T − P k

Bk+1
2 = Bk

2 +Ak −Qk

The problems P1 and P3 are of the form

‖y − x‖22 + λ‖x‖1

which can be solved by using soft-thresholding [33] operation:

x̂ = SoftTh(y, λ) = sign(y)×max

{

0, |y| −
λ

2

}

,
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The problem P2 can be solved by using the procedure as

described in section 3.3.3 of [15]. This is a ℓ2-norm shrinkage

operation on each row q(i) ∀i = 1, 2 . . . e, of matrix Q. The

ℓ2-norm shrinkage problem is

min
x

‖y − x‖22 + λ‖y‖2

whose solution is given by

x̂ = Shrink(y, λ) = max

{

‖y‖2 −
λ

2
, 0

}

⊙
y

‖y‖2
,

here ⊙ represent element by element multiplication operation

with the assumption that 0× 0
0 = 0 . The problem P4 is a dif-

ferentiable convex optimization problem. After differentiating

we get following linear system of equations with variable A :

MTMA+ µ1A∇
T∇+ µ2A = MT (Y − S)

+ µ1(P
T − BT

1 )∇+ µ2(Q− B2)

this equation can be re-written as

Ψa =vec(MT (Y − S)) + α where (9)

Ψ =(Ie ⊗MTM)µ1(∇
T∇⊗ Ie) + µ1Ipe

α =µ1(P
T −BT

1 )∇+ µ2(Q−B2))

The above system of linear equations is large and sparse

whose solution can be approximated using algorithms such

as LSQR [34]. Algorithm 1 outlines the steps of proposed

jointly-sparse and total-variation regularized hyperspectral un-

mixing algorithm using the split-Bregman approach. We use

the acronym JSTV for the proposed Joint Sparsity and Total

Variation based unmixing method. By setting λ1 = 0, we can

derive the solution of (6) which we refer as Split-Bregman

algorithm based Joint-Sparse regularized (SBJS) unmixing

algorithm. Similarly λ2 = 0 results in an algorithm that

solves (7) which we refer as Split-Bregman algorithm based

Total-Variation regularized (SBTV) unmixing algorithm.

Algorithm 1 Proposed JSTV Algorithm for solving (8)

1: input: Y , λ1, λ2, µ1, µ2, innerIter, outerIter

2: output: Â (Abundance maps).

3: for j = 1 to outerIter do

4: for k = 1 to innerIter do

5: P k+1 = SoftTh(∇(Ak)T +Bk
1 ,

λ1

µ1

)

6: Qk+1 = Shrink(Ak +Bk
2 ,

λ2

µ2

)

7: Sk+1 = SoftTh(MAK − Y, λ3)
8: Ak+1 = mat(a) from (9)

9: Bk+1
1 = Bk

1 +DhX
k+1D − P k+1

10: Bk+1
2 = Bk

2 +DvX
k+1D −Qk+1

11: end for

12: Y = Y −MAk − Sk

13: end for

14: return Â = Aj+1

IV. EXPERIMENTS AND RESULTS

This section describes the details of various experiments

executed to validate the proposed method. Firstly datasets

used in the experiments are described followed by evaluation

metrics. After that, various synthetic data experiments and real

data experiments are detailed with analysis of results.

Map 1 Map 2 Map 3 Map 4 Map 5

Map 1 Map 2 Map 3 Map 4

Fig. 1. Row one shows five synthetically generated abundance maps cor-
responding to first synthetic image whereas row two shows four abundance
maps corresponding to second synthetic image.

A. Data Description

The existing USGS spectral library [35] was utilized in all

the experiments. The library contains spectral signatures under

six categories namely artificial, coatings, minerals, liquids,

soil, and vegetation. We utilized endmembers from each of

these categories in the experiments. We manually checked each

endmember signature and removed some of the endmembers

that had missing values for some wavelengths.

Experiments were conducted with two synthetic and one

real dataset. The first synthetic dataset has five abundance

maps of 50 × 50 pixels with constant fraction value over a

region. These abundance maps are shown in row one of Fig. 1.

Each abundance map is composed of two or three endmembers

as represented by the number of rectangular boxes inside a

map. Dark blue background color represents zero pixel value.

Five endmembers were randomly selected to generate first

synthetic image of dimension 50 × 50 × 224. The second

synthetic dataset was generated using HYDRA toolbox [36].

Four abundance maps of size 128× 128 were generated using

Legendre method and are shown in row two of Fig. 1. The

second synthetic image of dimension 128 × 128 × 224 was

generated using four randomly selected endmembers from the

spectral library. Both the datasets satisfy abundance sum to

one constraint as well as abundance non-negativity constraint.

The experiments on the first synthetic image were conducted

with the endmember matrix of dimension R
224×269 such that

angle between any two spectral signatures was at least 4

degree. The experiments with second synthetic image does not

make any such assumption and utilized endmember matrix of

dimensions R
224×889.

Real data experiments were done with a portion of Jasper

Ridge image [37] of size 112 × 118 × 224. A false color

composite image is shown in Fig. 2. Several bands in this

image are noisy bands. We had considered all 224 bands in real

data experiments as opposed to many unmixing algorithms that

remove noisy bands before doing unmixing. We did not have

actual abundance maps for this real dataset however four major

constituent endmembers can be easily recognized by visual

interpretation. These four endmembers are roads, vegetation,

soil and water as indicated in the Fig. 2.
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Road

Water

Fig. 2. Portion of Jasper image used in experiments.

B. Synthetic Data Experiments

The synthetic data experiments were conducted to quantify

the performance of proposed unmixing algorithm.

All three variables (B1, B2, S) required by our algorithm

were initialized to zero. Each of the endmember in the matrix

M was normalized by ℓ2-norm. The abundance matrix A

was initialized with random values such that they satisfy both

the abundance sum constraint as well as the non-negativity

constraint. The parameters λ1, λ2, λ3, control the strength of

smoothness, joint-sparsity and sparse noise term respectively.

If the parameter values are zero then there is no denois-

ing/unmixing and output is same as input. As we increase

any parameter’s value then that regularization term will be in

effect. For example, a higher value of λ1 will enforce resulting

abundance maps to be highly joint sparse and it will trade-off

with retaining original abundance maps. Similarly, a higher

value of λ2 will encourage results with low total variation

of abundance maps. Increasing the value of λ3 will promote

results with low sparse noise. However, after a limit, high

values of parameters tend to deviate resulting outputs image

from original image.

The values of parameters for synthetic experiments were

found experimentally using five-fold cross validation. The

values for proposed JSTV algorithm used in experiments are

λ1 = 2, λ2 = 0.1, λ3 = 1, µ1 = 0.04, µ2 = 1. Parameter

values of SBTV algorithm were found to be λ1 = 0.05, λ2 =
0, λ3 = 1, µ1 = 0.05, µ2 = 0. Parameter values for SBJS

algorithm were found to be λ1 = 0, λ2 = 1, λ3 = 1, µ1 =
0, µ2 = 2. The parameters required by SR, SRTV, and CLSR

algorithms were set as described in corresponding articles.

In particular, parameter value of λ = 5e−4 was used in SR

algorithm. λ = 3e−3, λTV = 0.01, µ = 0.01 were used in

SRTV algorithm and λ = 1.3e−3 was used in CLSR algorithm.

The two parameters of LRMR algorithm, rank and sparsity,

were set to 8 and 15000 respectively. As the noise changes

we need to adjust values of these parameters accordingly;

however, the split-Bregman algorithm is quite robust to small

changes in parameter values.

The first set of experiments was done to check the robust-

ness of proposed unmixing method in the presence of different

kinds of noise. Tables I and II quantifies the reconstruction

quality of each method on two synthetic images using PSNR

and SSIM values. The numerical values shown corresponding

(a) Abundance maps estimated by SR

(b) Abundance maps estimated by CLSR

(c) Abundance maps estimated by SRTV

(d) Abundance maps estimated by SBJS

(e) Abundance maps estimated by SBTV

(f) Abundance maps estimated by proposed JSTV

Fig. 3. Reconstructed Abundance maps by different algorithms

to each algorithm represents the average of PSNR values

obtained for different abundance maps. The maximum value

of PSNR and SSIM are boldfaced. Last two rows in both of

these tables represent the case when mixed noise is present.

This mixed noise causes a sharp decrease in performance

of SR, SRTV, and CLSR algorithms because these three

algorithms are not designed to handle impulse noise. The

SBJS, SBTV, and proposed JSTV methods reduce that noise

because of utilization of sparse noise concept in the unmixing

framework. The results in Table II obtained on the second

synthetic image are not quantitatively as good as the results

in Table I for the first synthetic image. The main reason is the

utilization of different unmixing matrices in both the cases.

The endmembers matrix M in the second case was highly

coherent compared to the first case.

The second set of experiments were done on the synthetic

image with mixed noise consisting of Gaussian noise and ver-

tical line strips. Gaussian noise of signal to noise ratio (SNR)

of 30 dB was added along with three vertical line strips. The

noisy image is shown in Fig. 5(b). The unmixing algorithms

were run on this noisy image. The resulting abundance maps

are shown in Fig. 3. It can be observed from Fig. 3(a), 3(b),

and 3(c) that SR, CLSR, and SRTV are not able to remove line

strips from the abundance maps; however, the SRTV algorithm

has reduced Gaussian noise. The SBJS algorithm is not able to

reduce Gaussian noise but has reduced line strips as observed

in Fig. 3(d). The proposed JSTV algorithm has reduced both

the noise from all the abundance maps as can be seen by
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TABLE I
PSNR AND SSIM VALUES FOR DIFFERENT NOISE LEVELS. THE VALUES SHOWN ARE AVERAGED FOR FIVE ABUNDANCE MAPS. MIX1 CORRESPONDS TO

GAUSSIAN NOISE OF SNR 30 DB AND THREE VERTICAL LINES WHEREAS MIX2 IS MIX1 + 1% IMPULSE NOISE.

Noise Peak Signal to Noise Ratio (dB) Structural Similarity Index (SSIM)

SNR(dB) SR SRTV CLSR SBJS SBTV JSTV SR SRTV CLSR SBJS SBTV JSTV
40 40.21 45.77 34.23 44.36 59.08 61.94 0.981 0.997 0.91 0.993 0.999 0.999

30 29.92 37.73 33.23 32.79 42.6 46.82 0.847 0.989 0.957 0.869 0.981 0.99

20 20.52 24.37 21.16 22.27 27.5 29.87 0.609 0.78 0.657 0.583 0.827 0.84

mix1 25.25 31.19 25.23 32.65 41.58 46.84 0.78 0.964 0.77 0.869 0.975 0.994

mix2 18.79 18.57 18.89 32.39 41.71 46.23 0.594 0.802 0.607 0.862 0.979 0.992

(a) Abundance maps estimated by SR

(b) Abundance maps estimated by CLSR

(c) Abundance maps estimated by SRTV

(d) Abundance maps estimated by SBJS

(e) Abundance maps estimated by SBTV

(f) Abundance maps estimated by proposed JSTV

Fig. 4. Reconstructed Abundance maps by different algorithms

comparing estimated abundance maps in Fig. 3(f) with original

abundance maps shown in Fig. 1. The unmixing results on the

second synthetic image in the presence of only Gaussian noise

of SNR 30 dB are shown in Fig. 4. All four abundance maps

recovered by each algorithm are shown in Fig. 4 because a

particular unmixing algorithm may recover some abundance

maps correctly while causing other abundance maps to be

noisy.

The third set of experiments was carried out to check

denoising capability of proposed algorithm. The denoising

results have been compared with existing denoising algorithm

LRMR [14] that also takes mixed noise into account. The

(a) Original (b) Noisy (c) SR

(d) CLSR (e) SRTV (f) LRMR

(g) SBJS (h) SBTV (i) JSTV

Fig. 5. Denoising results by different algorithms on synthetic image

sparse unmixing models in (4) and (5) results not only in

abundance maps but can also provide denoised hyperspectral

image X̂ when estimated abundance matrix Â is multiplied

by endmember matrix M i.e. X̂ = MÂ where X̂ is esti-

mated image. The denoising results are shown in Fig. 5. The

synthetically generated abundance maps were multiplied with

five randomly selected endmembers to generate 50×50×224
synthetic hyperspectral image whose band 1 is shown in

Fig. 5(a). Figures 5(g), 5(h), and 5(i) clearly shows the

advantage of utilizing the concept of sparse noise in the

unmixing framework. Since this image has a lot of smooth

regions therefore Gaussian noise can be easily spotted in

denoised images however compared to other algorithms the

proposed JSTV algorithm has significantly reduced both kinds

of noise. The denoising results with the second synthetic

image are shown in Fig. 6. The noisy image of Fig. 6(b) was

generated with mixed noise consisting of Gaussian noise of

SNR 30 dB, 1% impulse noise, and three vertical lines. The

denoising results are quantified using PSNR and SSIM values

that are shown in Table III. The denoised results produced

by SBJS (Fig. 6(g)), SBTV (Fig. 6(h)), and JSTV (Fig. 6(i))

algorithms in the presence of mixed noise, are visually more

clear compared to results produced by of SR (Fig. 6(d)),

SRTV (Fig. 6(e)) and CLSR (Fig. 6(f)) since these three

algorithms does not explicitly account for the presence of
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TABLE II
PSNR AND SSIM VALUES FOR DIFFERENT NOISE LEVELS. THE VALUES SHOWN ARE AVERAGED FOR FIVE ABUNDANCE MAPS. MIX1 CORRESPONDS TO

GAUSSIAN NOISE OF SNR 30 DB AND THREE VERTICAL LINES WHEREAS MIX2 IS MIX1 + 1% IMPULSE NOISE.

Noise Peak Signal to Noise Ratio (dB) Structural Similarity Index (SSIM)

SNR(dB) SR SRTV CLSR SBJS SBTV JSTV SR SRTV CLSR SBJS SBTV JSTV
40 28.25 36.76 34.78 36.54 34.68 43.12 0.63 0.94 0.89 0.88 0.93 0.98

30 22.86 31.25 26.84 26.43 31.64 39.21 0.41 0.86 0.71 0.56 0.91 0.97

20 16.73 24.37 18.65 24.71 27.59 25.32 0.22 0.78 0.36 0.23 0.67 0.74

mix1 22.43 25.23 26.23 26.19 33.54 38.98 0.41 0.68 0.69 0.54 0.94 0.97

mix2 13.62 12.78 13.66 25.55 30.59 38.56 0.19 0.16 0.28 0.52 0.89 0.97

(a) Original (b) Noisy (c) LRMR

(d) SR (e) SRTV (f) CLSR

(g) SBJS (h) SBTV (i) JSTV

Fig. 6. Denoising results by different algorithms on synthetic image

TABLE III
PSNR AND SSIM VALUES FOR DENOISED SYNTHETIC IMAGE 2

PSNR (dB) SSIM

Noise LRMR JSTV LRMR JSTV

40 51.12 49.39 0.99 0.99
30 42.01 43.38 0.99 0.99
20 31.57 32.36 0.97 0.98

Mix1 41.86 44.11 0.99 0.99
Mix2 41.41 40.90 0.99 0.99

sparse noise in the problem formulations.

The fourth set of experiments was carried out to check

the evolution of the abundance maps with iterations. Figure 7

shows one of the abundance maps after every few iterations.

Since all abundance maps had the same behavior, therefore

evolution of only one abundance map is shown. It can be

observed that after two iterations, there are many endmembers

visible in the image. After 15 iterations, relevant endmembers

has been found and both kinds of noise have got reduced.

The fifth set of experiments shows the estimation of sparse

noise. The proposed formulation in (8) estimates sparse noise

term S because S is not known apriori. Figure 8 shows

how line strips are estimated as part of sparse noise term as

iterations increases. It shows that the inclusion of sparse noise

term helps in handling unmixing problem in the presence of

2 iterations 5 iterations 15 iterations 30 iterations 50 iterations

Fig. 7. Effect of Iterations on Abundances

5 iterations 10 iterations 20 iterations 30 iterations 50 iterations

Fig. 8. Noise estimation

line strips.

The sixth set of experiments was carried out to check the

convergence of proposed JSTV algorithm. The value of the

objective function in (8) is plotted against the number of

iterations. Figure 9 shows how objective function value decay

to a locally optimal value. It can be deduced that fifty iterations

are sufficient to reach the approximate solution; therefore, we

can set maximum iterations to fifty.

The seventh set of experiments was carried out to compare

time requirements of various algorithms. Public domain im-

plementations of SR, CLSR, and SRTV available from [38]

were utilized. Table IV summarizes the time taken by various

algorithms on the first synthetic image with Gaussian noise of

30 dB SNR and three vertical lines. Time was calculated on

Intel Core i7 machine having 8 GB RAM with Linux operating

system and Matlab2013a software. These time requirements

shown in Table IV are implementation dependent and may
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Fig. 9. Convergence of proposed JSTV algorithm
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TABLE IV
COMPARISON OF TIME REQUIREMENTS

SR CLSR SRTV SBJS SBTV JSTV

Time (sec) 5.42 6.71 18.23 5.12 12.28 12.92

vary from machine to machine. Major time was consumed in

approximating the least-square problem in each iteration and

matrix-matrix multiplications. It can be noted that proposed

JSTV can also be parallelized and applied on overlapping

blocks simultaneously. Time reported is averaged over ten

experiments.

C. Evaluation Metric

All the experimental results were quantified using two met-

rics namely peak signal to noise ratio (PSNR) and structural

similarity index measure (SSIM) [39]. PSNR between original

image x and reconstructed image y was calculated as:

PSNR = 10 log10

(

max(x)2

MSE

)

.

The PSNR value for a hyperspectral image was calculated as

the average of the sum of PSNR value for each band. The

exact reconstruction will lead to the maximum value of PSNR

as infinite. Higher the PSNR value better is the reconstruction

quality. The SSIM [39] is based on luminance (l), contrast (c),

and structure (s) terms, calculated as follows:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2

s(x, y) =
2σxy + c3

σxσy + c3

where c1, c2, c3 are constants and parameters α, β, γ were

set to one. µx, µy, σx, σy are mean and standard deviations

for images x and y. σxy is cross-covariance between x, and

y. SSIM value is normalized between zero and one where

maximum value of one indicate exact reconstruction.

D. Real Data Experiments

The real data experiments were done on a portion of

Jasper image as described in data description section. All 224

bands were considered during experiments. The four major

abundances maps estimated by various algorithms are shown

in Fig. 10. Visually we can compare the quality of estimating

these abundances with the original image shown in Fig. 2. We

can observe from Fig. 10(a) and 10(b) that SR and CLSR

algorithms resulted in noisy abundance map corresponding

to water endmember. Similarly, the abundance map for road

related pixels also shows some other materials. The proposed

JSTV method has resulted in comparatively cleaner abundance

maps as shown in Fig 10(f).

We have also compared denoising results by various algo-

rithm since Jasper image have some noisy bands. Figure 11

(a) Abundance maps estimated by SR

(b) Abundance maps estimated by CLSR

(c) Abundance maps estimated by SRTV

(d) Abundance Maps estimated by SBJS

(e) Abundance maps estimated by SBTV

(f) Abundance maps estimated by JSTV

Fig. 10. Four major abundance maps estimated by different algorithms. Left
to right : abundance maps corresponding to road, water, soil, and vegetation.

shows bands 1 of Jasper image as well as its zoom portion

over a small rectangular area. It can be observed from zoomed

portions that proposed JSTV algorithm resulted in compara-

tively cleaner image.

V. CONCLUSIONS

In this work, we have proposed a new approach for hy-

perspectral unmixing. This approach exploits joint sparsity

as well as the piece-wise smoothness of abundance maps in

the generic noise model which explicitly account for sparse

noise. Experimental results suggest the advantage of proposed

method over existing methods. Simultaneous utilization of

both total-variation regularization and joint-sparse regulariza-

tion is not redundant as both achieve different goals. Total

variation regularization has explored smoothness of abundance

maps whereas joint-sparsity exploit the fact that an endmember

if present, shall be present at various locations in the same

area.

This work utilized existing USGS spectral library for

spectral signatures. The spectral signatures in the existing

library can differ from the spectral signatures present in the
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(a) Original (b) SR (c) SRTV (d) CLSR

(e) LRMR (f) SBJS (g) SBTV (h) JSTV

Fig. 11. Denoising results on Jasper image obtained by different algorithms.
Top row: Band 1 denoised by various algorithms. Bottom row: zoomed in
portion of the same band marked with white square.

image. Also, it is possible that real images have endmembers

whose spectral signatures are not present in existing libraries;

therefore, we will extend the work to derive the endmember

signatures directly from the hyperspectral image.
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