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Abstract— This work addresses the problem of impulse 

denoising. Traditionally this was removed by median filtering 

(and its variants). In recent times, l1-l1 denoising techniques 

that employ an l1-norm on the data fidelity term and l1-norm 

on the image’s sparsifying transform has been proposed. This 

work proposes a transform learning based formulation for the 

said problem. Till date, it has been used for solving Gaussian 

denoising problems and MRI reconstruction problems. This is 

the first work, that proposes solving the impulse denoising 

problem using the said framework. Experimental results 

standard images show the superiority of our proposed method 

with respect to traditional (sparsity) and dictionary learning 

based approaches.  

Keywords— denoising, dictionary learning, transform 

learning 

I.  INTRODUCTION  

Impulse noise is defined as an error or aberration that 
affects a small portion of the signal, but the aberration is 
large in magnitude; thus impulse noise is sparse but large. In 
acoustics such noise arises from electromagnetic 
interference, scratches on disks or from ill synchronization 
during digital recording. In power electronics it arises from 
transients owing to the devices switching ON or OFF or 
from current surges. Impulse noise also affects 
electromagnetic signals. For example in EEG signals, sharp 
aberrations of small duration can be seen when the subject 
blinks eye. Similar artefacts corrupt ECG signals as well.  

 In imaging impulse noise arises when the light sensor is 
saturated. If the saturation is on the higher end, a white spot 
(salt) arises; if on the lower end it is a black spot (pepper). 
Usually it is more commonly known as salt-and-pepper 
noise; however in this work we will refer by the more 
generic term – impulse noise. Such noise is common in 
hyperspectral images arising from diffraction grating and 
transient dead pixels [1]. Impulse noise may arise in medical 
images as well [2-4]. For digital photography, it arises from 
malfunctioning of light sensors, faulty memory locations or 
timing errors in digitization 

The classical approach to remove impulse noise is via 
median filtering [5-7]; this is because the median is not 
affected by the extreme values (corruption) of impulse 
noise. However such techniques are only useful for 
removing noise when a relatively small portion of the image 
is affected – typically less than 10%. For heavier corruption, 
one needs using more modern techniques. The general 
approach is to minimize the absolute deviations subject to 

sparsity penalty on the transform coefficients of the image 
[8]. Since impulse noise is sparse minimizing the absolute 
deviations is sensible; the sparsity penalty on the transform 
(e.g. wavelet, DCT etc.) of the image is the modelling term.  

More recent papers [9-11] propose learning the sparsity 
promoting basis, instead of assuming the basis to be fixed 
(wavelet, DCT, Gabor etc.). They learn the sparsifying 
dictionary from the data. Such dictionary learning based 
approaches, yield some of the best known results.  

Dictionary learning (DL) is a synthesis formulation; i.e. 
the dictionary is learnt so as to regenerate / synthesize the 
data from the coefficients. Transform learning [12-14] is its 
analysis equivalent. It generates the features when the learnt 
transform operates on the data. Dictionary learning has seen 
a plethora of applications in signal processing and computer 
visions; the number of papers on this topic runs into 
hundreds. Transform learning (TL) on the other hand is a 
new topic, with only handful of papers introducing it and 
proving its convergence guarantees. Its potential in signal 
processing is yet to be fully explored. It has only been used 
for Gaussian denoising and MRI reconstruction [15].  

In the few areas TL has been applied, TL was found to 
supersede DL in performance – be it denoising or MRI 
reconstruction. This motivates us to apply this to the 
problem of impulse denoising. This is the first paper on this 
topic.   

The rest of the paper is organized into several sections. 
The following section discusses some relevant prior studies. 
The proposed formulation is given in section 3, along with 
the algorithm for solution. The experimental results are 
described in section 4. The conclusions of this work are 
discussed in section 5. 

II. LITERATURE REVIEW  

Impulse noise is additive in nature. It can be expressed as, 

y x n       (1) 

Here x is the clean image, n is the impulse noise and y the 
corrupted image. The task is to recover x given y and the 
knowledge of the distribution n.  

To recover the image, one assumes that the image is 
sparse in some transform domain (S). For orthogonal1 (DCT, 
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wavelet etc.) and tight-frame2 (redundant wavelet, complex 
dualtree etc.) sparsifying transforms, the following analysis 
and synthesis equations hold.  

:Analysis Sx       (2a) 

: TSynthesis x S      (2b) 

The synthesis equation allows (1) to be expressed in the 
form: 

Ty S n       (3) 

From (3), the sparse coefficients can be recovered by 
solving, 

11
min Ty S


        (4) 

The l1-norm on the data fidelity stems from the fact that 
impulse noise is sparse; the l1-norm on the solution 
promotes sparsity of the transform coefficients. Once (4) is 

solved ( ̂ ), the image is recovered by applying the 

synthesis equation ˆˆ Tx S  . 

We have discussed the synthesis prior formulation. This 
is restrictive. It can only employ orthogonal or tight-frame 
transforms that follow the analysis-synthesis framework. It 
precludes powerful linear sparsifying transforms like finite 
differencing / gradients (leading to total variation). Any 
linear transform will have an analysis representation (2a), 
but may not have synthesis representation (2b). To 
accommodate such linear operators, one needs the analysis 
prior formulation [16].  

In the co-sparse analysis prior formulation, one directly 
solves for the image and not the sparse transform 
coefficients. Evidence [16-18] suggested that the analysis 
prior formulation yields better recovery in inverse problems. 
The same holds for impulse denoising [8]. The analysis 
model for impulse denoising is: 

1 1
min

x
y x Sx      (5) 

It is easy to verify that for orthogonal transforms the 
analysis and synthesis forms are equivalent; but not for 
tight-frame transforms. Moreover the analysis formulation is 
generic; it has the synthesis formulation as a special case.  

These studies assumed that the sparsifying basis is fixed, 
i.e. they used mathematically well defined transforms like 
DCT, wavelet etc. They can sparsely represent a wide class 
of signals, but may not be the best for representation a 
specific problem. It is general knowledge that a learnt basis 
will always be better at representing a particular class of 
signals. In dictionary learning, one adaptively learns the 
basis / dictionary from data. This is expressed as, 

X DZ      (6) 

Here X is the data, D the learnt dictionary and Z the 
coefficients. Perhaps KSVD [19] is the most famous 
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dictionary learning technique. However it is not the most 
efficient; there are more computationally efficient learning 
techniques for the said task. In general it is expressed as, 

2

1
min

FZ
X DZ Z      (7) 

Here the l1-norm is defined on the vectorized version of Z. 
In order to prevent degenerate solutions and scale 
ambiguity, the dictionary atoms are normalized after every 
iteration.  

One can learn the dictionary from generic image datasets 
and apply it for denoising a test image. However, there is no 
guarantee that such a basis (trained on a different set of 
images) will be the best representative for the test image. 
Therefore, in dictionary learning, one learns the basis from 
the same image as it is denoising. For Gaussian denoising 
this is expressed as [20], 

2 2

2 2 1,Z,x
min i i i
D

i

y x Px Dz z      (8) 

The first term is for data fidelity. The term within the 
summation sign is the same as (7) – it is for learning the 
dictionary and the coefficients. Here Pi represents the patch 
selection operator. It selects a patch (overlapping / non-
overlapping) so that it can be sparse represented (zi) by the 
dictionary D. 

For impulse denoising, the data fidelity term for 
dictionary learning [9-11] is changed from the l2-norm to the 
l1-norm. The learning is expressed as, 

2

2 1 1,Z,
min i i i
D x

i

y x Px Dz z      (9) 

Solving (9) is more complicated than (8). In [9, 10] a 
variable splitting approach is proposed. An iterative 
reweighted least square type technique is proposed in [11] to 
solve (9).  

It has been found in the aforesaid studies that learning 
the dictionary adaptively indeed help improve denoising 
performance (for both Gaussian and impulse) over fixed 
transforms. The intuitive reason has been discussed before.  

III. TRANSFORM LEARNING FORMULATION 

Dictionary learning is a well studied topic, but transform 
learning is relatively new. Hence we discuss it briefly for 
ease of the reader.  

A. Transform Learning 

Transform learning analyses the data by learning a 
transform / basis to produce coefficients. Mathematically 
this is expressed as, 

TX Z       (10) 

Here T is the transform, X is the data and Z the 
corresponding coefficients.  

The following transform learning formulation was proposed 
[12, 13] –  



 2 2

1,
min + logdet +

F FT Z
TX Z T T Z     (12) 

The factor logdetT imposes a full rank on the learned 

transform; this prevents the degenerate solution (T=0, Z=0). 

The additional penalty 
2

F
T is to balance scale; without this 

logdetT can keep on increasing producing degenerate 

results in the other extreme.  

In [12, 13], an alternating minimization approach was 
proposed to solve the transform learning problem. This is 
given by –  

2

1
min

FZ
Z TX Z Z      (13a) 

 2 2
min + logdet

F FT
T TX Z T T      (13b) 

Updating the coefficients (13a) is straightforward. It can 
be updated via one step of soft thresholding. This is 
expressed as, 

 ( ) max 0, ( )Z signum TX abs TX      (14) 

Here indicates element-wise product.  

In the initial paper on transform learning [12], a non-
linear conjugate gradient based technique was proposed to 
solve the transform update. In the more refined version [13], 
with some linear algebraic tricks they were able to show that 
a closed form update exists for the transform.  

T TXX I LL      (15a) 

1 T TL XZ USV       (15b) 

 2 1/2 10.5 ( 2 ) TT R S S I Q L       (15c) 

The first step is to compute the Cholesky decomposition; 

the decomposition exists since TXX I is symmetric 

positive definite. The next step is to compute the full SVD. 

The final step is the update step. One must notice that 
1L
 is 

easy to compute since it is a lower triangular matrix. The 
proof for convergence of such an update algorithm can be 
found in [14]. 

B. Impulse Denoising 

Let us reiterate the problem statement. We assume an 
additive noise model, where x is the original image which is 
corrupted by impulse noise n generating a noisy image y.  

y x n   

For additive Gaussian noise, a transform learning based 
denoising solution has been proposed in prior studies [12, 
13]. It is expressed as follows,  

2 2

2 2 1,Z,x
min i i i
D

i

y x TPx z z      (16) 

As in the case of dictionary learning the data fidelity 

term
2

2
y x is an Euclidean norm owing to the Normal 

distribution of noise. The term 
2

2 1i i i

i

TPx z z  is the 

transform learning term.  

Since we want to remove impulse noise, the only change 
in the formulation (16) be in the data fidelity term; we have 
to change it to the more robust l1-norm. The final expression 
for impulse denoising will be, 

2

1 2 1, ,x
min i i i
T Z

i

y x TPx z z      (17) 

As we all know, changing the smooth l2-norm with the 
non-differentiable l1-norm increases the complexity of the 
solution. Solving (17) is not as straightforward as (16). We 
propose to derive a solution to (17) using the Split Bregman 
approach.  

We introduce a proxy p = y – x. We add terms relaxing 
the equality constraints between the variable (x) and its 
proxy (p); in order to enforce equality at convergence, we 
introduce Bregman variables b. The new objective function 
is:  

2

1 2, , ,

2

2 1

min ( )
T Z x p

i i i

i

p p y x b

TPx z z





   

  
   (18) 

Alternating minimization allows (18) to be expressed in 
terms of the following sub-problems: 

2

2 1,
P1:min i i i

T Z
i

TPx z z   

2 2

2 2
P2:min ( ) i i

x
i

p y x b TPx z       

2

1 2
P3:min ( )

p
p p y x b     

Sub-problem P1 is the standard transform learning 
problem. We have already studied the solution in the 
previous section. Sub-problem P2 is a simple least squares 
problem. It has a closed form solution in the form of 
pseudoinverse; however in this work we use conjugate 
gradient to solve for x. Sub-problem P3 is an l1-
minimization problem. It has a closed form update in the 
form of a single step of soft thresholding.  

The final step of the Split Bregman technique is to 
update the relaxation variable. This is done by simple 
gradient descent. 

( )b p y x b     

The iterations continue till the objective function converges 
to a local minima, or till a maximum number of specified 
iterations.  

IV. EXPERIMENTAL RESULTS 

In this work experiments are carried out on some 
standard test images – Barbara, Cameraman, Peppers and 
Rice. Tests were carried out with 2%, 5% and 10% salt and 
pepper noise.  



We have compared with the dictionary learning (DL) 
based method for impulse denoising [9]. We have also 
compared with the synthesis (using wavelet transform) and 
analysis (using total variation – TV) prior formulations 
proposed in [8]. For evaluation, the metric we have used is 
structural similarity index (SSIM); this is because SSIM is 
known to correlate better with human evaluation compared 
to PSNR.  

The quantitative results are shown in the following 
tables. The optimal settings (number of dictionary atoms, 
parameters, sparsity etc.) for the methods compared against 
have been taken from the corresponding papers; the 
parameters vary for each noise level and we have used 
prescribed in the papers that are supposed to yield the best 
possible results.  

For our proposed transform learning (TL) based method, 
a redundant transform (2x) is used. The patch sizes are 8x8; 
non-overlapping patches are considered. It is initialized with 
concatenated wavelet and DCT matrices. Our method 
requires specification of one parameter (µ) and one hyper-
parameter (γ);  µ has been fixed on a validation image 
(Lena) for each noise level; the values used are 0.25 for 2% 
and 5% noise and 0.5 for 10% noise. We found that the 
value of the hyperparameter did not have much effect on the 
denoising performance; we kept it fixed at 0.1.  

TABLE I. SSIM FOR 2% IMPULSE NOISE 

Image Proposed DL [9] TV [8] Wavelet [8] 

Barbara 0.93 0.93 0.90 0.88 

Cameraman 0.92 0.92 0.92 0.89 

Peppers 0.93 0.95 0.95 0.92 

Rice 0.92 0.94 0.94 0.92 

TABLE II. SSIM FOR 5% IMPULSE NOISE 

Image Proposed DL [9] TV [8] Wavelet [8] 

Barbara 0.90 0.86 0.89 0.86 

Cameraman 0.91 0.88 0.90 0.87 

Peppers 0.91 0.89 0.91 0.91 

Rice 0.90 0.88 0.89 0.91 

TABLE III. SSIM FOR 10% IMPULSE NOISE 

Image Proposed DL [9] TV [8] Wavelet [8] 

Barbara 0.84 0.80 0.78 0.80 

Cameraman 0.83 0.81 0.79 0.79 

Peppers 0.87 0.82 0.83 0.83 

Rice 0.85 0.81 0.81 0.80 

 

The results are interesting. We find that for low noise, 
the existing techniques perform better overall. Dictionary 
Learning based removal yields the best results. TV 
denoising also yields results almost at par with DL.  

When the noise increases, i.e. with moderate (5%) 
corruption of pixels, our proposed transform learning based 
formulation takes over. It yields the best results. DL and TV 
suffer significant drop in SSIM. Comparatively, the drop in 
performance is less in the wavelet based synthesis 
formulation.  

With even more noise – 10% corruption of pixels, our 
method performs the best. The results of transform learning 
do not deteriorate much from the 5% noise. But there is a 
significant fall in denoising performance for all the other 
techniques.  

For qualitative evaluation we have shown the original, 
noisy and denoised images for 10% noise in the following 
figure. Visual evaluation corroborates the numerical results. 
One notices that the proposed method produces the cleanest 
results with almost negligible smoothing. The dictionary 
learning based method preserves contours but cannot get rid 
of all the noise. The TV based denoised method removes 
noise but is overtly smooth. The wavelet based denoising 
produces the worse results; it cannot remove significant 
portion of noise.  

      

      

Fig. 1. Left to Right –  Original , Noisy, Proposed, Dictionary Learning, TV, Wavelet 

V. CONCLUSION 

This work proposes a technique for removing impulse 
noise based on a transform learning based formulation. 
Results show that our method yields the best results when 
compared with state-of-the-art dictionary learning based and 
sparsity based (wavelet denoising and total variation 
regularization) methods. This work experiments on 
simulated noise. In future, we would like to see how this 

technique fairs in real life scenarios like hyperspectral 
denoising and EEG / ECG artifact removal.  
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