
Sparsely Connected Autoencoder

Kavya Gupta

IIIT Delhi

New Delhi, India

kavya@iiitd.ac.in

Angshul Majumdar

IIIT Delhi

New Delhi, India

angshul@iiitd.ac.in

Abstract— This work proposes to learn autoencoders with

sparse connections. Prior studies on autoencoders enforced

sparsity on the neuronal activity; these are different from our

proposed approach – we learn sparse connections. Sparsity in

connections helps in learning (and keeping) the important

relations while trimming the irrelevant ones. We have tested the

performance of our proposed method on two tasks –

classification and denoising. For classification we have compared

against stacked autneencoders, contractive autoencoders, deep

belief network, sparse deep neural network and optimal brain

damage neural network; the denoising performance was

compared against denoising autoencoder and sparse (activity)

autoencoder. In both the tasks our proposed method yields

superior results.

Index Terms— autoencoder, classification, sparsity, denoising

I. INTRODUCTION

There is a plethora of work in sparse neural networks.

Broadly it can be segregated into i) sparse activity and ii)

sparse connectivity. Sparsity can arise in two contexts. The

sparse activity property means that only a small fraction of

neurons is active at any time. The sparse connectivity property

means that each neuron is connected to only a limited number

of other neurons.

Since its onset, neural networks have been claimed to

mimic the human brain. For a certain activity / task only a

portion of the brain (neurons) are active. The whole brain is

never used. In fact, it is a widely circulated myth that we use

only 10% of our brain; the myth is untrue. But it is well known

that only a certain portion of the brain is active for a certain

task; i.e. given the whole brain only a sparse set of neurons are

actually active (for the given task). Therefore, if indeed the

neural network is an approximate representative of the brain,

we would expect to have sparse connections. This aspect has

been captured by LeCun’s work on ‘optimal brain damage’ [1].

He devised a technique to trim connections of a neural network

(hence the name brain damage) without degrading its

performance.

In recent times the idea has been revisited. In [2, 3] sparsity

is enforced both on the activity and on the connectivity. In [4]

sparsity on activity was promoted for rectifier neural network;

it was used in [5] to improve the performance on phone

recognition. Sparsity in connections was exploited in [6] for the

problem of speech recognition. In [7] and [8] sparsity in

connections is enforced on convolutional neural network and

recurrent neural network respectively. In most of these studies

the common observation is that introduction of sparsity leads to

a slight dip in performance but reduces the complexity of the

network significantly.

In this work we are specifically interested in autoencoders.

Although there has been a lot of work on sparse connectivity

and sparse activity on neural networks, all prior studies in

sparse autoencoders enforced sparsity on the activity; there is

no prior study that promoted sparsity in connections. This is

the first work to do so. In [9] sparsity was introduced in terms

of firing neurons. If the neurons are of high value (near about

1), it is allowed to be fired, the rest are not. In [10], only the top

K high valued neurons are fired; in [11] only the neurons

beyond a predefined threshold were fired. In [12], a

comparison of different sparsity promoting terms (on activites)

were compared; these were the KL divergence [9] and

variations of l1-norm [11]. It was shown in [13] that by

combining the output of several such sparse autoencoders

(trained as in [9]), one is able to improve performance of

several image recognition tasks.

We compare our proposed sparsely connected autoencoder

with several variants of autoencoders (for classification and

denoising) and deep belief network (for classification). We find

that our proposed technique yields better results compared to

existing techniques.

Although most of the readers of this paper will be abreast

with literature on neural networks in general and autoencoders

in particular, we provide a brief review of autoencoders for the

sake of completeness in the next section. In section 4, our

proposed method is described in detail. The experimental

evaluation is reported in section 5. The conclusions of this

work is discussed in section 6.

II. BACKGROUND

W W’

In
p

u
t

La
ye

r

O
u

tp
u

t
La

ye
r

Hidden Layer

Fig. 1. Single Layer Autoencoder

An auto encoder (as seen in Fig. 1) consists of two parts –

the encoder maps the input to a latent space, and the decoder

maps the latent representation to the data. For a given input

vector (including the bias term) x, the latent space is expressed

as:

h Wx (1)

Here the rows of W are the link weights from all the input

nodes to the corresponding latent node. The mapping can be

linear, but in most cases it is non-linear (sigmoid, tanh etc.):

()h Wx (2)

The decoder portion reverse maps the latent features to the

data space.

' ()x W Wx (3)

Since the data space is assumed to be the space of real

numbers, there is no sigmoidal function here.

During training, the problem is to learn the encoding and

decoding weights – W and W’. This is achieved by minimizing

the Euclidean cost:
2

, '

arg min ' ()
F

W W

X W WX (4)

Here 1[| ... |]NX x x consists all the training sampled

stacked as columns. The problem (4) is clearly non-convex.

However, it is solved easily by gradient descent techniques

since the sigmoid function is smooth and continuously

differentiable.

In
p

u
t

La
ye

r

Hidden Layer 1

O
u

tp
u

t
La

ye
r

Hidden Layer L

………

Fig. 2. Stacked Autoencoder

There are several extensions to the basic autoencoder

architecture. Stacked / Deep autoencoders [9] have multiple

hidden layers (see Fig. 2). The corresponding cost function is

expressed as follows:

1 1 1

2

... , ' ... '

arg min ()
L L

F
W W W W

X g f X

 (5)

where 1 2' '... ' ()Lg W W W f X and

 1 2 1... ()L Lf W W W X .

Solving the complete problem (5) is computationally

challenging. The weights are usually learned in a greedy

fashion – one layer at a time [14].

Stacked denoising autoencoders (SDAE) [15] are a variant

of the basic autoencoder where the input consists of noisy

samples and the output consists of clean samples. Here the

encoder and decoder are learnt to denoise noisy input samples.

The learned features appear to be more robust when learnt by

SDAE.

In a recent work a marginalized denoising autoencoder was

proposed [16], which does not have any intermediate nodes but

learns the mapping from the input to the output. This

formulation is convex (unlike regular autoencoders); the trick

here is to marginalize over all possible noisy samples so that

the dataset need not be augmented like SDAE. Such an

autoencoder was used for domain adaptation.

Another variation for the basic autoencoder is to regularize

it, i.e.
2

()

arg min () (,)
F

W s

X g f X R W X (6)

The regularization can be a simple Tikhonov regularization –

however that is not used in practice. It can be a sparsity

promoting term [9]-[11] or a weight decay term (Frobenius

norm of the Jacobian) as used in the contractive autoencoder

[17]. The regularization term is usually chosen so that they are

differentiable and hence minimized using gradient descent

techniques.

III. PROPOSED SPARSECONNECT AUTOENCODER

Autoencoders usually have a non-linear activation function.

However, in [18] it was shown that an autoencoder usually

operates in the linear region. Therefore in this work, we will

use a linear activation function. This allows us to derive a more

efficient algorithm which is faster than its non-linear

counterparts. We also show (experimentally) that the linear

autoencoder yields better results than its non-linear counterpart.

The basic formulation of an autoencoder with linear activation

function is given by:
2

',

arg min '
F

W W

X W WX (7)

The basic autoencoder is prone to overfitting; especially

when the number of training samples is limited. Denoising

autoencoders use a stochastic regularization technique.

However, given the Euclidean cost function of the autoencoder

a more direct way to regularize it would be incorporate penalty

terms to the basic formulation. For example, a contractive

autoencoder with linear activation function would lead to the

following formulation:

 2 2 2

',

arg min ' '
F F F

W W

X W WX W W (8)

The Frobenius norm on the weights regularizes the network to

have small values. The regularization prevents overfitting of

the network.

We propose to regularize the autoencoder such that it has

sparse connections both at the encoder and the decoder. The

idea of trimming irrelevant connections in neural networks is

not new; it was first proposed back in 1990 in the form of

optimal brain damage [1]. In recent times, learning sparse

structures in neural networks has gained momentum [2-8].

However, to the best of our knowledge, there is no work that

learns autonencoders with sparse connections. Prior studies in

sparse autoencoder [9-12] concentrate on sparse activities; not

on sparse connections. In this respect ours is the first work to

propose sparsely connected autoencoders.

Just as a human brain does not require all its neurons for a

specific task, we postulate that an autoencoder does not need to

utilize all its connections either. The issue of maintaining

important connections without over-fitting is taken care of, if

we have sparse weights. The portions which are not useful for

representation are pruned and only the important connections

in the network are maintained. Such a sparse connection is

easily achieved from the following proposed formulation,

 2

1/0 1/0
',

arg min ' '
F

W W

X W WX W W (9)

We have abused the notation a bit, the subscript 1/0 denotes

either an l1-norm or an l0-norm and is defined on the vectorial

representation of the weights. The l1-norm is convex, and has

been widely used in recent times by Compressed Sensing [19],

[20]. But the l0-norm does not ideally yield sparse weights, the

l0-norm does. Unfortunately l0-norm minimization is an NP

hard problem [21]. However there are approximate techniques

to solve such l0-minimization problems.

Autoencoders with non-linear activation function are

solved using gradient descent techniques. Such techniques

cannot be directly applicable for our proposed formulation.

This is because the l1/l0-norm penalties are not differentiable

everywhere. In this work we follow a Majorization

Minimization approach to solve the said problem.

A. Majorization Minimization

(a)

(b)

(c)

Fig. 3. Majorization-Minimization [22]

Fig. 3 shows the geometrical interpretation behind the

Majorization-Minimization (MM) approach. The figure depicts

the solution path for a simple scalar problem but essentially

captures the MM idea.

Let, J(x) be the function to be minimized. Start with an

initial point (at k=0) xk (Fig. 3a). A smooth function Gk(x) is

constructed through xk which has a higher value than J(x) for

all values of x apart from xk, at which the values are the same.

This is the Majorization step. The function Gk(x) is constructed

such that it is smooth and easy to minimize. At each step,

minimize Gk(x) to obtain the next iterate xk+1 (Fig. 3b). A new

Gk+1(x) is constructed through xk+1 which is now minimized to

obtain the next iterate xk+2 (Fig. 3c). As can be seen, the

solution at every iteration gets closer to the actual solution.

For convenience we express the problem (9) in a slightly

different manner in terms of transposes –
2

arg min ()T T T

FH

X X H R H (10)

Here H=W’W and R(H) denotes the penalty.

Only the least squares part need to be majorized; the penalty

terms are not affected.
2

() ()T T T

F
J H X X H R H (11)

For this minimization problem, Gk(x), the majorizer of J(x) is

chosen to be,
2

()

 () ()()

T T T
k

F

T T T T T T
k k

G H X X H

H H aI XX H H

 (12)

where a is the maximum eigenvalue of the matrix XXT and I is

the identity.

One can check that at H=Hk the expression Gk(H) reduces

to J(H). At all other points it is larger than J(H); the value of

‘a’ assures that the second term is positive definite.

2

()

 ()

2

()

() 2

()

(2) ()

T T T

k F

T
T T T T

k k

T T T T T

T
T T T T

k k

T T T T T T

k k k k

T

T T

G H X X H

H H aI XX H H R H

XX XX H HXX H

H H aI XX H H R H

XX H aI XX H XX H aI XX H

aHH R H

a BH HH C R H

where
1

()T T T T

k kB H X X X H
a

 ,

()T T T

k kC XX H aI XX H

Using the identity
2

2
2T T TA D A A A D D D , one can

write,
2

2
() ()T

kG H a B H aB B C R H

2

2
()a B H R H K

where K consists of terms independent of x.

Therefore, minimizing Gk(x) is the same as minimizing the

following,

2'

2

1
() ()kG H B H R H

a
 (13)

where
1

()T T T T

k kB H X X X H
a

 .

This update is known as the Landweber iteration.

B. l1-norm penalty

First we derive the algorithm for solving the l1-norm

minimization problem.

 2

1 1
',

arg min ' '
F

W W

B W W W W
a

 (14)

This is a bilinear problem and we propose to solve it

alternately, i.e. we fix W’ and solve W and then solve W’

assuming W is fixed. These two steps are done in every

iteration.

2

1 1
arg min 'k k F

W

W B W W W
a

 (15a)

2

1 1 1
'

' arg min ' 'k k F
W

W B W W W
a

 (15b)

In both cases, the problem remains the same – that of a least

squares minimization with l1-norm penalty.

Let us take the first problem and work out the solution for

it; the solution for the other problem will remain the same.

To solve (15a) we invoke the majorization approach once

again. Therefore (15a) can be expressed as,

2

1
arg min

F
W

P W W
a

 (16)

where
1

' 'T
k k k kP W W B W W

 , α is the maximum

eigenvalue of ' 'TW W

The above function (16) is actually de-coupled, i.e.

2 2

1 i i iF
i

P W W P W W
a

 (17)

Therefore, (17) can be minimized term by term, i.e.

 2

1
2 2 ()

F

i i i

i

P W W
P W signum W

W a

 (18)

Fig. 4. Soft Threshold Rule (with τ=2)

Setting the partial derivatives to zero and solving for W

gives the graph shown in Fig. 4 with threshold
2a

. That is,

the minimizer of (16) is obtained by applying the soft-threshold

rule to P with threshold
2a

. The soft-threshold rule is the

non-linear function defined as,

(,) 0

x x

soft x x

x x

 (19)

Or more compactly,

() max(0,| |)
2

W signum P P
a

 (20)

This concludes the steps for solving (15a); the steps for (15b)

are exactly the same. In a compact fashion, the algorithm for

solving the l1-norm penalty problem is given as:
Initialization:

2

0 0

arg min

' and

T T

FH

T

T

H X X H

H USV

W US W V

In every iteration ‘k’

2
1 1

1

2
1 1 1

'

1
Compute ()

Update arg min '

1
' '

() max(0,| |)
2

Similarly update ' arg min ' '

T T T T
k k

k k F
W

T
k k k k

k

k k F
W

B H X X X H
a

W B W W W
a

P W W B W W

W signum P P
a

W B W W W
a

Our initialization is deterministic, hence the results are

results are repeatable – there is no variation between trials as

long as other parameters remain same.

C. l0-norm penalty

The l1-norm penalty is basically a shrinkage function

defined by the soft thresholding. It cannot get an exactly sparse

solution, it only shrinks the values of unwanted weights. To get

a sparse solution in every iteration, one needs to solve the l0-

norm minimization problem. This is an NP hard problem but

has approximate solutions. The more common practice is to

solve (40) using a greedy approach based on Orthogonal

Matching Pursuit [23], [24]. However, these are not efficient

for solving large scale problems. To solve a k-sparse problem,

k iterations are required. A better approach to solve (21) is

based on Iterative Hard Thresholding [25].

 2

0 0
',

arg min ' '
F

W W

B W W W W
a

 (21)

We solve it via alternating minimization.

2

1 0
argmin 'k k F

W

W B W W W
a

 (22a)

2

1 1 0
'

' arg min ' 'k k F
W

W B W W W
a

 (22b)

As before, both the problems remain the same. We only

derive the algorithm to solve (22a). To solve it, we invoke the

majorization approach once again. Therefore (22a) can be

expressed as,

2

0
arg min

F
W

P W W
a

 (23)

where
1

' 'T
k k k kP W W B W W

This is a decoupled problem and can be expressed as,

2 2 0
1 1 10

2 0

() | |

 ... () | |

F

n n n

P W W P W W
a a

P W W
a

 (24)

We can process (24) element-wise.

To derive the minimum, two cases need to be considered:

case 1 – 0iW and case 2 – 0iW . The element-wise cost is

0 in the first case. For the second case, the minimum is reached

when i iW P . Comparing the cost on both cases,

2

0 if 0

() if

i

i i i

W

W W P
a

This suggests the following updates rule,

when / 2

when / 20

ii
i

i

P aP
W

P a

This is popularly known as hard thresholding and is

represented as:

1 ,
2

kW HardTh P
a

 (25)

This leads to an algorithm somewhat similar to the previous

one. It is succinctly represented below.
Initialization:

2

0 0

arg min

' and

T T

FH

T

T

H X X H

H USV

W US W V

In every iteration ‘k’

2
1 0

1

2
1 1 0

'

1
Compute ()

Update arg min '

1
' '

,
2

Similarly update ' arg min ' '

T T T T
k k

k k F
W

T
k k k k

k

k k F
W

B H X X X H
a

W B W W W
a

P W W B W W

W HardTh P
a

W B W W W
a

IV. EXPERIMENTAL EVALUATION

The MNIST digit classification task is composed of 28x28

images of the 10 handwritten digits. There are 60,000 training

images with 10,000 test images in this benchmark. The images

are scaled to [0,1] and we do not perform any other pre-

processing.

Experiments are also carried out on the more challenging

variations of the MNIST dataset. These have been used in [11]

among others and were introduced as benchmark deep learning

datasets. All these datasets have 12,000 training (we do not

need validation) and 50,000 test samples. The size of the image

as before is 28x28 and the number of classes are 10.

Dataset Description

basic Smaller subset of MNIST.

basic-rot Smaller subset of MNIST with random rotations.

bg-rand Smaller subset of MNIST with uniformly distributed

random noise background.

bg-img Smaller subset of MNIST with random image

background.

bg-img-rot Smaller subset of MNIST digits with random

background image and rotation.

We have also evaluated on the problem of classifying

documents into their corresponding newsgroup topic. We have

used a version of the 20-newsgroup dataset [26] for which the

training and test sets contain documents collected at different

times, a setting that is more reflective of a practical application.

The training set consists of 11,269 samples and the test set

contains 7,505 examples. We have used 5000 most frequent

words for the binary input features. We follow the same

protocol as outlined in [27].

Our third dataset is the GTZAN music genre dataset [28,

29]. The dataset contains 10000 three-second audio clips,

equally distributed among 10 musical genres: blues, classical,

country, disco, hip-hop, pop, jazz, metal, reggae and rock.

Each example in the set is represented by 592 Mel-Phon

Coefficient (MPC) features. These are a simplified

formulation of the Mel-frequency Cepstral Coefficients

(MFCCs) that are shown to yield better classification

performance. Since there is no predefined standard split and

fewer examples, we have used 10-fold cross validation

(procedure mentioned in [15]), where each fold consisted of

9000 (we do not require validation examples unlike [8])

training examples and 1000 test examples.

A. Linear vs Non-linear

Most studies in neural networks employ a non-linear

activation function. We proposed linear activation owing to the

ease of solution. We will show that, atleast for the benchmark

datasets used in these experiments, the simple linear (Identity)

activation function yields better classification accuracy than

their non-linear (sigmoid) counterpart.

The linear autoencoder weights are initialized by solving the

least squares problem,
2

min
FQ

X QX and setting W as the top

(number of nodes) right singular vectors of Q. For the non-

linear autoconder we use the Hinton’s implementation [30].

The autoencoder architectures remains same otherwise;

both (linear and non-linear) are three layer architectures with

392-196-98 hidden nodes. The representation from the deepest

layer is used for classification. We employ two non-parametric

classifiers – KNN (K=1) and Sparse Representation based

Classification (SRC) [31]. We want to test the representation /

feature extraction capability of the linear and non-linear

autoencoders; this is best done using simple non-parametric

classifiers. Parametric classifiers like NN and SVM may be

fine tuned to yield better results, but in such a case it is difficult

to gauge if the improvement in results is owing to the feature

extraction or owing to the fine tuning.

TABLE I. LINEAR VS NON-LINEAR ACTIVATION

Dataset KNN SRC

Linear Non-linear Linear Non-linear

MNIST 97.33 96.11 98.33 97.29

basic 95.25 94.86 96.91 96.43

basic-rot 84.83 80.71 90.04 84.29

bg-img 77.16 70.97 84.14 76.94

bg-rand 86.42 81.11 91.03 85.49

bg-img-rot 52.21 44.6 62.46 50.96

20-

newsgroup
71.78 70.48 72.56 70.49

GTZAN 84.08 83.31 84.39 83.37

The results show that the linear one always yields better

results. The improvement is small when the number of

training samples are larger but for the more challenging

datasets, the linear autoencoder yields improve by a large

margin.

B. Classification Performance

We compare our results with the stacked autoencoder

(SAE), Contractive Autoencoder (CAE) and Deep Belief

Network (DBN) [28]. The SAE and CAE uses linear

activation. As before, the representation from the deepest layer

is used as features. For our sparsely connected autoencoder

λ=0.01 is used. In each of the tables, the best results are shown

in bold.

TABLE II. KNN (K=1) RESULTS

Dataset SAE CAE DBN Proposed

l0-norm

Proposed

l1-norm

MNIST 97.33 82.83 97.05 97.21 95.91

basic 95.25 79.92 95.37 95.39 92.49

basic-rot 84.83 58.56 84.71 85.14 81.01

bg-rand 86.42 65.61 86.36 86.88 68.87

bg-img 77.16 58.51 77.16 77.22 79.84

bg-img-rot 52.21 27.10 50.47 51.80 38.91

20-

newsgroup

70.48 71.08 70.09 71.74 71.23

GTZAN 83.31 82.67 80.99 83.89 83.08

TABLE III. SRC RESULTS

Dataset SAE CAE DBN Proposed

l0-norm

Proposed

l1-norm

MNIST 98.33 87.19 88.43 98.42 97.16

basic 96.91 85.03 87.49 97.03 95.43

basic-rot 90.04 68.63 79.47 90.19 87.76

bg-rand 91.03 72.25 79.67 91.69 76.17

bg-img 84.14 65.68 75.09 85.11 85.84

bg-img-rot 62.46 34.01 49.68 62.61 47.75

20-

newsgroup

70.49 71.08 71.02 72.38 71.97

GTZAN 83.37 82.70 81.21 84.72 83.89

TABLE IV. SVM RESULTS

Dataset SAE CAE DBN Proposed

l0-norm

Proposed

l1-norm

MNIST 98.50 88.74 98.53 98.60 97.70

basic 96.96 86.61 97.07 97.12 95.70

basic-rot 89.43 72.54 89.05 89.22 87.07

bg-rand 91.28 75.20 89.59 91.73 87.04

bg-img 84.86 68.76 85.46 85.35 78.01

bg-img-rot 60.53 40.97 58.25 60.91 46.30

20-
newsgroup

70.28 70.95 71.82 73.98 73.54

GTZAN 82.76 82.09 82.69 83.52 83.04

The results show that our proposed method yields better

results than SAE and DBN on an all the datasets (except for the

larger MNIST with KNN). Under fair comparison (keeping the

classifiers to be same and non-parametric) one can say that our

method yields better representation than other deep learning

techniques like SAE, CAE and DBN.

Next (Table IV) we compare the results with stacked

denoising autoencoder (SDAE), deep belief network (DBN),

sparse deep neural network (SDNN) [33] and optimal brain

damage (OBD) [1]. We repeat the results from l0-norm sparsely

connected autoencoder with SRC (since these are the best

results we obtained). SDAE and DBN uses a fine tuning with a

neural network classifier in the final stage. SDNN is a

contemporary sparse deep classifier and OBD is a classical

work with a shallow architecture. The results show that our

method yields results which are at par with SDAE and DBN

and are better than sparse neural networks.

TABLE V. COMPARATIVE RESULTS

Dataset SDAE DBN SDNN OBD Proposed

MNIST 98.72 98.76 98.57 97.99 98.42

basic 97.16 96.89 96.69 95.41 97.03

basic-rot 90.47 89.70 89.58 87.89 90.19

bg-rand 89.70 93.27 90.21 88.27 91.69

bg-img 83.32 83.69 82.96 80.65 85.11

bg-img-rot 56.24 52.61 51.63 50.19 62.61

20-

newsgroup

70.93 72.40 69.74 65.44 72.38

GTZAN 83.98 81.62 80.31 77.80 84.72

We have compared the training times of different

autoencoders and DBN. The results are shown in Table V.

Both are proposed methods are significantly faster than the

others. The computational cost per iteration is higher for us, but

the algorithms converge faster. The results are only shown on

the large MNIST dataset and the MNIST basic.

TABLE VI. TRAINING TIME IN MINUTES

Dataset → MNIST basic

DBN 78 21

Stacked Autoencoder (non-linear) 251 53

Stacked Autoencoder (linear) 111 35

Contractive Autoencoder (linear) 98 24

Proposed l1-norm 4 1

Proposed l0-norm 50 6

The configuration of the machine running these experiments is:

RAM- 24 GB

OS- Red Hat Enterprise Linux Server release 7.0 (Maipo)

CPU - Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz ,there are two cpus of 6

cores each

Simulation on Matlab R2014a.

C. Denoising Results

Autoencoders have been used previously for image

denoising. In [11] it was shown that autoencoder with sparse

features leads to good denoising results. They showed results

for Gaussian and impulse denoising. It is not optimal to remove

impulse noise with autoencoders; this is because impulse noise

is sparse. Since we are formulating an autoencoder with l2-

norm data fidelity, we can optimally remove Gaussian noise

only; this is the problem we address in this work.

For comparison, we use the standard metrics for image

quality assessment - PSNR (Peak Signal to Noise Ratio) and

SSIM (Structural Similarity Index) [34]. We compare our

approach (SparseConnect) with the sparse autoencoder [11]

and stacked denoising autoencoder (SDAE).

We use single layer autoencoders for image denoising. The

number of nodes in the hidden layer is kept to be 512. The

value of λ is 0.001.

We carried out experiments on the grayscale CIFAR-10

dataset. The CIFAR-10 dataset (Fig. 10) is composed of 10

classes of natural images with 50,000 training examples in

total, 5,000 per class. Each image is of size 32x32. For these

experiments the color images have been converted to

greyscale. Zero mean Gaussian noise was added to these

images. The noisy images served as the input to the

autoencoders and the clean images were the output. For testing,

the noisy test images were as inputs and the image obtained at

the output was compared with the clean image to test the

denoising performance.

The results are shown in the following table. The PSNR

and the SSIM values shown here are the means over 10,000

test images.

TABLE VII. DENOISING RESULTS

Noise Variance, PSNR

and SSIM for Noisy
Image

SDAE Sparse

Autoencoder

Proposed

SparseConnect
(l1-norm)

Proposed

SparseConnect
(l0-norm)

Variance=0.01,

PSNR=19.9691

SSIM=0.5691

PSNR=21.95

SSIM=0.6315

PSNR=22.94

SSIM=0.6803

PSNR=23.90

SSIM=0.7238

PSNR=26.03

SSIM=0.8052

Variance=0.04

PSNR= 14.0155

SSIM=0.3256

PSNR=21.66

SSIM=0.6167

PSNR=22.63

SSIM=0.6667

PSNR=23.53

SSIM=0.7027

PSNR=25.68

SSIM=0.7928

Variance=0.09
PSNR= 10.4936

SSIM=0.2011

PSNR=21.30
SSIM=0.5973

PSNR=22.25
SSIM=0.6478

PSNR=23.01
SSIM=0.6725

PSNR=25.27
SSIM=0.7779

The improvement is significant. Usually in image

denoising literature a PSNR improvement of 0.5 dB to 1 dB

is considered to be good. In this case the improvement is

near about 3dB compared to the sparse denoising

autoencoder. Also the improvement in SSIM is around 0.1 –

this is huge improvement. For visual evaluation some sample

images are shown in Fig. 5.

Fig. 5. Left to Right – Original test image, noisy image, SDAE, Sparse
Autoencoder, Proposed l1-norm and Proposed l0-norm.

The denoising results may not be at par with the state-of-

the-art like BM3D or KSVD, but are better than competing

autoencoder based techniques. The proposed SparseConnect

autoencoder gets the best denoising results, balancing noise

and sharpness.

V. CONCLUSION

This work proposes the concept of sparse connections in

autoencoders. Although there are several studies on sparsely

connected neural networks, there is no prior study on

sparsely connected autoencoder. This is the first work in that

respect. All prior studies in sparse autoencoders concentrate

on the problem of sparse activity.

The motivation is drawn from the success of DropOut

and DropConnect neural networks where over-fitting was

prevented by randomly switching off some activations or

connections during training. Instead of using such a

stochastic regularization technique, our proposed method

deterministically ‘learns’ the sparse connections. It keeps the

relevant connections and prunes the unimportant ones. This

is achieved by introducing sparsity promoting regularization

penalties on the autoencoder weights.

Experiments were carried out for two benchmark

autoencoder tasks – classification and denoising. For

classification, comparison is made with the SAE, CAE,

DBN, SDAE, sparse deep neural network (SDNN) and

optimal brain damage (OBD). Under fair comparison (when

non-parametric classifiers are used) our method outperforms

others. Even with fine-tuned neural network architectures,

our proposed approach yields better results than SDNN and

OBD and performs at par with densely connected networks

like SDAE and DBN. For denoising, we compared against

the denoising autoencoder and the sparse autoencoder [3].

Even for this task our proposed approach yields considerably

better results.

REFERENCES

[1] Y. LeCun, “Optimal Brain Damage”, Advances in Neural

Information Processing Systems, 1990.

[2] M. Thom and G. Palm, “Sparse Activity and Sparse

Connectivity in Supervised Learning”, Journal of Machine

Learning Research, Vol. 14, pp. 1091-1143, 2013.

[3] V. Gripon, “Sparse Neural Networks With Large Learning

Diversity”, IEEE Transactions on Neural Networks and

Learning Systems, Vol. 22 (7), pp. 1087-1096, 2011.

[4] X. Glorot, A. Bordes and Y. Bengio, “Deep Sparse Rectifer

Neural Networks”, AISTATS 2011.

[5] L. Toth, “Phone Recognition with Deep Sparse Rectifier

Neural Networks”, ICASSP 2013.

[6] D. Yu, F. Seide, G. Li and L. Deng, “Exploiting Sparseness

in Deep Neural Networks for Large Vocabulary Speech

Recognition”, ICASSP 2012.

[7] B. Liu, M. Wang, H. Foroosh, M. Tappen and M. Penksy,

“Sparse Convolutional Neural Networks”, CVPR 2015.

[8] H. Awano, S. Nishide, H. Arie, J. Tani, T. Takahashi, H. G.

Okuno and T. Ogata, “Use of a Sparse Structure to Improve

Learning Performance of Recurrent Neural Networks”,

Neural Information Processing, pp. 323-331, Lecture Notes in

Computer Science.

[9] Andrew Ng, "Sparse Autoencoder", CS294A Lecture notes,

vol. 72, 2011

[10] A. Makhani and B. Frey, "K-sparse Autoencoder", ICLR

2014.

[11] K. H. Cho, "Simple Sparsification Improves Sparse Denoising

Autoencoders in Denoising Highly Noisy Images", ICML

2013.

[12] N. Jiang, W. Rong, B. Peng, Y. Nie and Z. Xiong“ An

empirical analysis of different sparse penalties for

autoencoder in unsupervised feature learning”, IJCNN 2015.

[13] Y. Lu, L. Zhang, B. Wang and J. Yang, “Feature ensemble

learning based on sparse autoencoders for image

classification”, IJCNN 2014.

[14] Y. Bengio, “Learning deep architectures for AI”, Foundations

and Trends in Machine Learning, 2 (1),1-127. 2009

[15] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. -A.

Manzagol, “Stacked denoising autoen coders: Learning useful

representations in a deep network with a local denoising

criterion”, Journal of Machine Learning Research, Vol. 11,

3371-3408, 2010.

[16] M. Chen, K. Weinberger, F. Sha, Y. Bengio, “Marginalized

Denoising Autoencoders for Nonlinear Representation”,

ICML 2014.

[17] S Rifai, P Vincent, X Muller, X Glorot, Y Bengio,

“Contractive auto-encoders: Explicit invariance during feature

extraction”, ICML 2011.

[18] H. M. Abbas, “Analysis and pruning of nonlinear auto-

association networks”, IEE Proceedings on Vision, Image and

Signal Processing, Vol. 151 (1), pp. 44-50, 2004.

[19] D. Donoho, Compressed sensing. (IEEE Trans. on

Information Theory, 52(4), pp. 1289 - 1306, April 2006)

[20] E. Candès and T. Tao, Near optimal signal recovery from

random projections: Universal encoding strategies? (IEEE

Trans. on Information Theory, 52(12), pp. 5406 - 5425,

December 2006)

[21] B. K. Natarajan, "Sparse approximate solutions to linear

systems", SIAM Journal on Computing, 24(1995), 227-234

[22] Sparse Signal Restoration: cnx.org/content/m32168/latest/

[23] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, "Orthogonal

matching pursuit: recursive function approximation with

applications to wavelet decomposition", Asilomar Conference

on Signals, Systems and Computers, pp.40-44, 1993.

[24] J. A. Tropp and A. C. Gilbert, "Signal Recovery From

Random Measurements Via Orthogonal Matching Pursuit",

IEEE Transactions on Information Theory, Vol. 53 (12),

pp.4655-4666, 2007.

[25] Thomas Blumensath and Mike E. Davies, "Iterative

Thresholding for Sparse Approximations", Journal of Fourier

Analysis Applications, Vol. 14 (5), 629-654, 2008.

[26] http://people.csail.mit.edu/jrennie/20Newsgroups/20news-

bydate-matlab.tgz

[27] H. Larochelle and Y. Bengio, "Classification using

Discriminative Restricted Boltzmann Machines",

International Conference on Machine Learning, 2008.

[28] G. Tzanetakis and P. Cook, "Musical genre classification of

audio signals", IEEE Transactions on Audio and Speech

Processing 2002.

[29] http://marsyasweb.appspot.com/download/data_sets/

[30] www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

[31] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma,

“Robust face recognition via sparse representation”, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

31(2), 210-227, 2009.

[32] http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html

[33] http://www.mathworks.in/matlabcentral/fileexchange/42853-

deep-neural-network

[34] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,

"Image quality assessment: From error visibility to structural

similarity," IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600-612, Apr. 2004.

http://www.mathworks.in/matlabcentral/fileexchange/42853-deep-neural-network
http://www.mathworks.in/matlabcentral/fileexchange/42853-deep-neural-network

