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Abstract— In this work we propose a classification 

framework called class-wise deep dictionary learning 

(CWDDL). For each class, multiple levels of dictionaries are 

learnt using features from the previous level as inputs (for first 

level the input is the raw training sample). It is assumed that 

the cascaded dictionaries form a basis for expressing test 

samples for that class. Based on this assumption sparse 

representation based classification is employed. Benchmarking 

experiments have been carried out on some deep learning 

datasets (MNIST and its variations, CIFAR and SVHN); our 

proposed method has been compared with Deep Belief 

Network (DBN), Stacked Autoencoder, Convolutional Neural 

Net (CNN) and Label Consistent KSVD (dictionary learning). 

We find that our proposed method yields better results than 

these techniques and requires much smaller run-times. The 

technique is applied for Brain Computer Interface (BCI) 

classification problems using EEG signals. For this problem 

our method performs significantly better than Convolutional 

Deep Belief Network(CDBN).  

Index Terms— dictionary learning, deep learning, EEG 

I. INTRODUCTION 

In the last decade dictionary learning techniques have 

become popular in the signal processing and computer vision 

communities; the seminal work that initiated research in this 

area is the KSVD [1]. The main objective of dictionary 

learning is to learn a basis that can represent a class of 

signals; mostly in a sparse fashion. In signal processing these 

techniques are mostly used for solving inverse problems 

dealing with restoration, denoising, reconstruction, super-

resolution etc. 

For solving inverse problem the learning task is 

unsupervised; the only constraint is the sparsity of the 

learned coefficients. Researchers in computer vision 

introduced the notion of supervised dictionary learning. The 

idea is straightforward – to learn the dictionary / coefficients 

in a supervised fashion one just needs to add the 

corresponding penalty terms. Initial techniques proposed 

simple approaches which learnt specific dictionaries for each 

class [2]. Later approaches incorporated discriminative 

penalties into the dictionary learning framework such as 

softmax discriminative cost function, Fisher discrimination 

criterion, linear predictive classification error penalty and 

hinge loss function. 

In recent years machine learning witnessed success and 

popularity of deep learning techniques. Convolutional Neural 

Network (CNN), Deep Boltzman Machine (DBM) and 

Stacked Denoising Autoencoder (SDAE) have been 

successful in various supervised and unsupervised learning 

scenarios. Motivated by the success of deep learning, we 

propose a classification framework based called deep 

dictionary learning. Our framework is based on the Sparse 

Representation based Classification (SRC) approach [3]; 

instead of using features from training classes as the basis for 

new test samples, we use learned dictionaries as the basis. 

This is a simple technique but yet yields competent results 

with more sophisticated deep learning architectures.  

We have carried out two types of experiments. Since we 

are proposing a new classification framework, we test it on 

several benchmark deep learning datasets. The results show 

that our method yields better results than state-of-the-art 

deep learning tools; in fact our method features among the 

top-10 results on these datasets. In the next part of the 

experiment, we compare our algorithm for some BCI 

competition problems. Here we perform significantly better 

than state-of-the-art existing approaches.  

The rest of the paper will be organized into several 

sections. A brief literature review on dictionary learning 

ensues in the following section. The proposed framework for 

deep dictionary learning is described in section 3. 

Experimental results are shown in section 4. The conclusions 

of this work are discussed in section 5. 

 

II. LITERATURE REVIEW 

A. Dictionary Learning 

Early studies in dictionary learning wanted to learn a 

basis for representation. There were no constraints on the 

dictionary atoms or on the loading coefficients. The method 

of optimal directions (MOD) [4] was employed to solve the 

learning problem: 
2

,
min

FD Z
X DZ      (1) 

Here X is the training data, D is the dictionary to be learnt 

and Z consists of the loading coefficients. Today, we know 

this problem in the name of matrix factorization.  

For problems in sparse representation, the objective is to 

learn a basis that can represent the samples in a sparse 

fashion (2), i.e. Z needs to be sparse. KSVD [1] is perhaps 

the most well known work in this respect, but the problem of 

learning sparse representations from overcomplete basis 



dates back to the late 90’s [5]. Fundamentally it solves a 

problem of the form: 
2

0,
min such that 

FD Z
X DZ Z      (2) 

Dictionary learning is a bilinear (non-convex) problem; it is 

usually solved in an alternating fashion. In the first stage it 

learns the dictionary and in the next stage it uses the learned 

dictionary to sparsely represent the data. 

Researchers in machine learning became interested in 

dictionary learning owing to its flexibility. Dictionary 

learning provides the opportunity to design dictionaries to 

yield not only sparse representation (e.g., curvelet, wavelet, 

and DCT) but also discriminative information. Initial 

techniques in discriminative dictionary learning propose 

naïve approaches which learn specific dictionaries for each 

class [6-8]. Later, discriminative penalties are introduced in 

dictionary learning framework to improve classification 

performance. One such technique is to include softmax 

discriminative cost function [9-11]; other discriminative 

penalties include Fisher discrimination criterion [12], linear 

predictive classification error [13, 14] and hinge loss 

function [15, 16]. In [17, 18] discrimination is introduced by 

forcing the learned features to map to corresponding class 

labels.  

B. Sparse Representation based Classification 

The SRC assumes that the training samples of a 

particular class approximately form a linear basis for a new 

test sample belonging to the same class. One can write the 

aforesaid assumption formally. If xtest is the test sample 

belonging to the kth class then, 

,1 ,1 ,2 ,2 , ,...
k ktest c c c c c n c nx x x x          (3) 

where xc,i are the training samples and η is the approximation 

error. 

In a classification problem, the training samples and their 

class labels are provided. The task is to assign the given test 

sample with the correct class label. This requires finding the 

coefficients αc,i in equation (3). Equation (3) expresses the 

assumption in terms of the training samples of a single class. 

Alternately, it can be expressed in terms of all the training 

samples so that 

testx X        (4) 

where 1,1 ,1 ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]
c Cn c c n C C nX x x x x x x  

and 
11,1 1, ,1 , ,1 ,[ ... ... ... ... ... ]

c C

T
n c c n C C n       . 

According to the SRC assumption, only those α’s 

corresponding to the correct class will be non-zeroes. The 

rest are all zeroes. In other words, α will be sparse. 

Therefore, one needs to solve the inverse problem (4) with 

sparsity constraints on the solution. This is formulated as: 
2

12
min testx X x


       (5) 

Once (10) is solved, the representative sample for every 

class is computed: , ,

1

( )  
cn

rep c j c j

j

x c v


 . It is assumed that 

the test sample will look very similar to the representative 

sample of the correct class and will look very similar, hence 

the residual
2

2
( ) ( )test repc x x c   , will be the least for the 

correct class. Therefore once the residual for every class is 

obtained, the test sample is assigned to the class having the 

minimum residual. 

III. PROPOSED APPROACH 

A. Deep Dictionary Learning 

In this work we propose the concept of deep dictionary 

learning. Instead of learning a single level of dictionary, we 

learn the dictionaries in layers. The representation is 

expressed as, 

1 2... NX D D D Z     (6) 

Here X is the training data, D1…DN are different layers of 

dictionaries and Z is the representation at the final layer. For 

a sparse Z, the optimization problem that needs to be solved 

is, 

1

2

1 2 1/0,..., ,
min ...

N

N FD D Z
X D D D Z Z    (7) 

Here we abuse the notations a bit, ‘1/0’ mean that it can be 

either l1-norm or l0-norm. 

The problem is difficult to solve. Following studies in 

deep learning, we propose solving it in a greedy fashion [19] 

– one layer at a time. For the first layer, we substitute, 

1 2... NZ D D Z , in (6), leading to, 

1 1X D Z      (8) 

Z1 is not sparse, hence this problem (9) can be solved by 

matrix factorization, i.e., 

1 1

2

1 1
,

min
FD Z

X D Z      (9) 

There are a plethora of techniques to solve (9). In this work, 

we solve it using simple alternating minimization. 

1

2

1 1 1min
FZ

Z X D Z      (10a) 

1

2

1 1 1min
FD

D X D Z      (10b) 

Both have a closed form solution. It starts with initializing 

D1. In every iteration, the features are updated assuming a 

fixed D1 (10a); and the dictionary is updated assuming a 

fixed Z1. Iterations continue till the solution reaches some 

local minima.  

Once the first level is solved, we substitute 

1 1 1 2 2 2 3, ... NX D Z D D Z Z D D Z   . Hence we need to 

solve, 

2 2

2

1 2 2
,

min
FD Z

Z D Z     (11) 

As before, this too can be solved using alternating 

minimization.  

Such substitution is carried out till the final layer, where 

we get, 

1N NZ D Z       (12) 



The feature is sparse at the final level. The problem is 

therefore posed as, 
2

1 1/0,
min

N

N N FD Z
Z D Z Z      (13) 

Alternating minimization of (13) leads to, 
2

1 1/0
min N N FZ

Z Z D Z Z      (14a) 

2
min

N

N N FD
D X D Z      (14b) 

The second problem has a closed form solution. The first 

problem for the case of l1-norm is easily solved via iterative 

soft-thresholding (IST) [20]. For l0-norm it can be solved 

using iterative hard thresholding.  
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In deep learning, the layers are learnt in a greedy fashion 

– one by one. This is called the pre-training phase. After 

layer-wise learning, the entire network is learnt in one go – 

this is the fine-tuning phase. The fine-tuning allows feedback 

into previous layers. However, such a fine tuning is not 

mandatory as has been shown by FaceNet [22]; they learn 

the layers greedily and use them for feature extraction. In 

this work we follow a similar approach. We just learn the 

deep dictionaries in a greedy fashion. This is equivalent to a 

feed-forward neural network; there is no back-propagation.  

Our other reason to not go for fine-tuning is because 

single layer dictionary learning enjoys certain theoretical 

advantages [23-26]. There are local convergence guarantees. 

These cannot be easily extended to deep dictionary learning 

when all the dictionaries are learnt in one go. But when we 

learn the dictionaries are learnt in a greedy fashion, one layer 

at a time, each layer is bound to converge.  

The schematic diagram of deep dictionary learning is given 

in the following figure. 

 

 
Figure 2. Deep Dictionary Learning 

 

B. Class-wise Learning 

The Sparse Representation based Classification (SRC) 

approach assumes that the training samples from a class form 

a linear basis for representing the test samples of the same 

class. Assuming that the test sample belongs to class k, this 

is represented as: 
( ) ( )c c

testx X        (15) 

Here 
( )

,1 ,[ | ... | ]
c

c
c c nX x x , from (3).  

In this work, we learn a basis / dictionary for representing 

each class. It is assumed that the test sample should be 

sparsely represented by the dictionary for the correct class 

only; for all other classes the coefficients should be zero or 

negligibly small (we have not enforced this criterion during 

dictionary learning, but we hope that this is being satisfied).  

According to our model, the test sample is represented as: 
(1) ( ) (C)| ... | | ... |c

testx D D D         (16) 

where α is sparse.  

Such a migration from using raw samples to learned 

dictionaries for representing test data has been envisaged by 

the text retrieval community. Salton introduced the Vector 

Space Model for text mining in the 70s [27]; it used the 

term-document matrix for representing a new document. In 

late 90’s, Lee and Seung [28] proposed learning a basis for 

the term-document matrix using non-negative matrix 

factorization for document representation.  

However, in our case, the basis is not a single level of 

dictionary, instead it is a multi-level deep dictionary, i.e.  
( ) (1) ( ) ( )

1 2 ...c c C

ND D D D      (17) 

The classification proceeds in a fashion similar to SRC. 

The sparse coefficient vector α is found via l1-norm 

minimization.  
2

(1) ( ) ( )

1/02
min | ... | | ... |c C

testx D D D


       (18) 

Once α is obtained, the residual error for each class is 

obtained as:  
( ) ( )

2
( ) , 1...Cc c

testerror c v D c      (19) 

It must be noted that the proposed technique is not the 

same as [29] – they propose a feature extraction scheme 

where a separate classifier is required; our method 

encompasses both feature extraction and classification; it is a 

complete solution. In [29] the authors propose a classical 

approach for multi-stage vector quantization – well known in 

digital voice processing literature. They create multiple 

stages of visual codebooks by image patches. These 

codebooks are not class specific. The error in each encoding 

stage, is encoded by the codebook from the subsequent stage. 

This technique is fundamentally different from ours. We 

learn multiple stages of class specific dictionaries – this is 

not the same as vector quantization. Besides our dictionaries 

are class specific, theirs are not. We encode the coefficient / 

representation by dictionaries from the subsequent stage – 

not the quantization error. 

 



IV. EXPERIMENTAL EVALUATION 

A. Benchmarking Experiments 

 
Figure 2. Samples from MNIST dataset 

 

We have carried the experiments on benchmark datasets. 

The first one is the MNIST (Figure 2). The MNIST digit 

classification task is composed of 28x28 images of the 10 

handwritten digits. There are 60,000 training images with 

10,000 test images in this benchmark. No preprocessing has 

been done on this dataset.  

 

 
MNIST Rotations 

 
MNIST Background Random 

 
MNIST Background Image 

 
MNIST Background Image with Rotation 

 
Figure 3. Samples from MNIST Variations 

(www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations) 

 

Experiments were carried out on the MNIST variations 

datasets (Figure 3); these have been routinely used for 

benchmarking deep-learning algorithms. The datasets are 

MNIST basic, MNIST background random (bg-rand), 

MNIST background image (bg-image), MNIST rotated (rot) 

and MNIST background image with rotations (bg-image-

rot). All these datasets are widely used for benchmarking 

deep learning tools. Both the rotations and random noise 

background dataset has 12000 training samples and 50000 

test samples. Usually the training is done using 10,000 

samples and the remaining 2,000 are used for validation. 

 

 

 

 

 
Figure 4. Samples from CIFAR-10 (www.cs.toronto.edu/~kriz/cifar.html) 

 

The CIFAR-10 dataset is composed of 10 classes of 

natural images with 50,000 training examples in total, 5,000 

per class. Each image is an RGB image of size 32x32 taken 

from the tiny images dataset and labeled by hand. These 

images need to be preprocessed. We follow the standard 

preprocessing technique – the RGB is converted to YUV and 

the Y channel is used. Before putting it for training, mean 

subtraction and global contrast normalization is done. 

 

 
Figure 5. Samples from SVHN (ufldl.stanford.edu/housenumbers/) 

 

The Street View House Numbers (SVHN) dataset is 

composed of 604,388 images (using both the difficult 

training set and simpler extra set) and 26,032 test images.  

The goal of this task is to classify the digit in the center of 

each cropped 32x32 color image.  This is a difficult real 

world problem since multiple digits may be visible within 

each image. We preprocessed these samples in the same way 

as CIFAR.  

Our proposed method is non-convex and hence the results 

are dependent on the initialization of the dictionary. In order 

to make the results repeatable we create the dictionary by 

choosing columns after Gram-Schmidt orthogonalization of 

the input feature. This may not yield the best classification 

results but makes the results repeatable.  

In the experiments, the final level learnt dictionary for 

sparse features, the rest of the levels generated dictionaries 

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.cs.toronto.edu/~kriz/cifar.html


for dense features. We use two variants of the proposed deep 

dictionary learning.  In the first one, we use l1-minimization 

in the final stage. In the second case, we use l0-minimization 

All the datasets use 3 levels with 100-80-10 atoms. 

The benchmarking was carried out with state-of-the-art 

deep learning tools – Deep Belief Network (DBN) [30], 

Stacked Denoising Autoencoder (SDAE) [31], Label 

Consistend KSVD (LC-KSVD) [18] and Convolutional 

Neural Network (CNN). The CNN, SDAE and DBN were of 

3 layers; they were optimized for the said datasets. For LC-

KSVD, we report the best results. 

 

TABLE I.  CLASSIFICATION ACCURACY 

Dataset Proposed - l1 Proposed - l0 DBN SDAE LC-KSVD CNN 

MNIST 99.48 99.12 98.78 98.72 87.05 99.06 

MNIST basic 97.15 97.27 96.89 96.54 83.59 98.56 

MNIST rot 89.38 90.6 89.70 89.70 80.42 89.45 

MNIST bg-image 79.15 84.40 83.69 77.00 70.92 88.89 

MNIST bg-rand 90.83 93.33 93.27 88.72 80.04 93.23 

MNIST bg-image-rot 50.17 52.83 52.61 48.07 42.31 57.97 

CIFAR-10 85.55 83.60 78.90 74.30 60.32 83.40 

SVHN 94.42 93.11 92.60 89.70 80.64 94.97 

 

 

In all cases, one of our proposed method is among the 

top-2 results. In fact when training data is limited, our 

method yields significantly better results than generic deep 

learning techniques like DBN and SDAE and supervised 

shallow dictionary learning – LC-KSVD. Our method gives 

result at par with CNN. In general, between the two of our 

methods, the l0-norm yields better results when the number 

of training samples are considerably large, but the l1-norm 

excels for limited number of samples. 

One may wonder, if collapsing all the dictionaries into 

one will have the same effect as having the set of cascaded 

dictionaries. The answer would be in the negative. This is 

because the dictionary learning process is bi-linear and non-

convex; hence it is not possible to collapse all the 

dictionaries into one. We have done a simple experiment to 

verify this empirically. On all the databases we fixed the 

dictionary atoms to 10 – the same as the final level of our 

three level dictionary learning; and to 80 – the same as the 

first level of our three level dictionary learning. The results 

are shown in Table 2. The results are markedly different. 

TABLE II.  SINGLE LEVEL VS MULTI-LEVEL DICTIONARY 

LEARNING 

Dataset Multi-level 

(80-40-10) 

Single level 

(10 atoms) 

Single level 

(80 atoms) MNIST 99.48 10.76 11.43 

MNIST basic 97.15 9.94  12.23 

MNIST rot 89.38 13.40  9.80 

MNIST bg-image 79.15 8.13  8.39 

MNIST bg-rand 90.83 11.49 9.16 

MNIST bg-image-rot 50.17 8.18 11.08 

 

The runtimes for the proposed method is compared with two 

deep learning techniques – deep belief network and stacked 

autoencoder. Our method is a complete solution for 

classification. Therefore we compare it with CNN, SDAE 

and DBN with soft-max classifier. We only show the results 

on the MNIST and MNIST basic. The size of other MNIST 

variations take almost the same time as the basic dataset. The 

CIFAR-10 dataset is of the same size as MNIST; so the run-

times are almost the same. The machine used is Intel (R) 

Core(TM) i5 running at 3 GHz; 8 GB RAM, Windows 10 

(64 bit) running Matlab 2014a. 

TABLE III.  RUN-TIME IN MINUTES 

Dataset SDAE DBN CNN Proposed - l1 Proposed – l0 

MNIST 2010 505 1106 315 330 

basic 1422 100 400 80 90 

 

B. BCI Experiments 

Some recent studies showed that deep belief network and 

its variants yield very good results for EEG classification 

problems [32-35]. In this work we focus on the Brain 

Computer Interface (BCI) classification problem addressed 

in [35]. We follow the experimental protocol outlined 

therein.  

We have used two open source EEG datasets to conduct 

the experiments. Dataset 1 comes from dataset III in 2003 

BCIC II; it contains a total of 280 groups of left and right 

hand Motor Imagery (MI) EEG data. Dataset 2 comes from 

dataset Iva in 2005 BCIC III; it includes the ‘aa’, ’al’ and 

‘aw’ three subsets, and each subset contains a total of 280 

groups of right hand and foot MI EEG data. Dataset 3 is 

from dataset III in 2005 BCIC III; it contains 360 groups of 4 

classes (left hand, righthand, foot, tongue). These are the 

same datasets used in [35].  

The experimental protocol followed in this work stems 

from [35]. Dataset 1 and dataset 2 each have 280 trails. We 

set different numbers of training samples, which are 80, 120, 

160, 200, 240; the remaining samples are test samples. 

Dataset 3 has 297 trails. We set different numbers of training 



samples for dataset 3, which are 140, 160, 180; the 

remaining samples are test samples. For a fixed number of 

training samples, 20 independent runs were conducted; for 

each run the training samples were selected uniformly at 

random. The mean and standard deviation of the 

classification accuracy is reported: Table 4 (Dataset 1); 

Table 5 (Dataset 2, ‘aa’), Table 6 (Dataset 2, ‘al’), Table 7 

(Dataset 2 ‘aw’) and Table 8 (Dataset 3). 

The prior work [35] showed that convolutional deep 

belief network (CDBN) yields superior results compared to 

traditional feature extraction techniques used in BCI. They 

compared it with  Bandpower [36], MVAAR (multivariate 
adaptive autoregressive) [37] and CSP (common spatial 

pattern) [38]. Therefore in this work we only compare our 

proposed class-wise deep dictionary learning algorithm with 

CDBN [35]; the architecture used for CDBN is detailed in 

their paper. 

As a pre-processing step, the time domain signal is first 

converted to frequency domain. This is because the data we 

handle is from an asynchronous BCI. We choose the signal 

in 8-30Hz frequency band (mentioned in [35]). As the 

number of channels of EEG data is large (e.g., 118 channels 

of dataset 2), PCA is used to whiten the data and reduce 

dimensionality before feeding it to the learning algorithm.  

TABLE IV.  DATASET 1: CLASSIFICATION ACCURACY 

#training 

samples 

CDBN [35]  

(%) 

Proposed-l1 

(%) 

Proposed-l0 

(%) 

80 83.6, ±1.8 86.1, ±2.8 86.4, ±2.8 

120 85.9, ±1.8 88.2, ±3.1 88.7, ±3.0 

160 86.0, ±2.1 89.0, ±3.4 90.0, ±3.1 

200 86.1, ±3.3 90.9, ±3.8 91.6, ±3.8 

240 88.3, ±5.7 92.1, ±4.2 92.6, ±4.0 

TABLE V.  DATASET 2 ‘AA’: CLASSIFICATION ACCURACY 

#training 

samples 

CDBN [35] 

(%) 

Proposed-l1 

(%) 

Proposed-l0 

(%) 

80 88.6, ±2.8 90.1, ±2.9 90.5, ±2.8 

120 85.9, ±2.6 91.2, ±3.0 91.7, ±3.0 

160 85.4, ±2.6 91.3, ±3.0 91.9, ±3.3 

200 85.9, ±2.8 91.9, ±3.2 92.6, ±3.5 

240 88.3, ±3.7 92.7, ±3.6 93.0, ±4.0 

TABLE VI.  DATASET 2 ‘AL’: CLASSIFICATION ACCURACY 

#training 
samples 

CDBN [35] 

(%) 

Proposed-l1 

(%) 

Proposed-l0 

(%) 

80 95.1, ±0.8 98.2, ±0.9 99.5, ±0.8 

120 96.2, ±0.6 100, ±0.0 100, ±0.0 

160 100, ±0.0 100, ±0.0 100, ±0.0 

200 100, ±0.0 100, ±0.0 100, ±0.0 

240 100, ±0.0 100, ±0.0 100, ±0.0 

TABLE VII.  DATASET 2 ‘AW’: CLASSIFICATION ACCURACY 

#training 

samples 

CDBN [35] 

(%) 

Proposed-l1 

(%) 

Proposed-l0 

(%) 

80 94.6, ±1.2 97.2, ±1.9 98.9, ±0.5 

120 96.2, ±0.5 98.8, ±0.8 99.5, ±0.2 

160 95.3, ±1.0 99.6, ±0.5 100, ±0.0 

200 100, ±0.0 100, ±0.0 100, ±0.0 

240 100, ±0.0 100, ±0.0 100, ±0.0 

TABLE VIII.  DATASET 3: CLASSIFICATION ACCURACY 

#training 

samples 

CDBN [35] 

(%) 

Proposed-l1 

(%) 

Proposed-l0 

(%) 

140 82.0, ±1.9 86.2, ±2.1 86.7, ±2.0 

160 82.4, ±1.5 87.6, ±1.4 88.0, ±1.3 

180 87.3, ±1.7 93.9, ±1.8 93.6, ±18 

 

Datasets 1 and 2, correspond to two class problems; 

dataset 3 is a slightly more challenging 4 class problem. For 

ALL the problems our method performs better than the 

convolutional deep belief network. The margin between 

CDBN and our proposed method is considerably large. 

Between the two of our techniques (l1-norm and l0-norm), 

there is not much of a difference; the l0-norm yields 

marginally better results compared to the l1-norm.  

V. CONCLUSION 

In this work we propose a new feature extraction and 

classification framework – class-wise deep dictionary 

learning. The idea is to learn multiple levels of dictionaries 

from the features learnt from previous levels; the first level 

of dictionary learning uses the raw data as input. This is the 

first work that proposes deep dictionary learning.  

The classification is based on the sparse representation 

approach based on the assumption that the class-wise 

dictionaries will represent the test data in the sparse fashion. 

This is a relatively simple technique; we compared it with all 

major deep learning tools like DBN, SDAE, CNN and a 

shallow supervised dictionary learning (LC-KSVD) 

technique. On the benchmark problems our method yields 

the best results on an aggregate; especially in the challenging 

scenario when the training data is limited. For a real problem 

on BCI, our method has been compared with the state-of-the-

art convolutional DBN; we always perform considerably 

better. We have shown that our technique is much faster than 

other deep learning techniques. 

The dictionary learning technique we employ at each 

level is naïve – it produces either a dense or a sparse set of 

features. There has been significant amount of work on 

discriminative dictionary learning techniques. We believe 

that the results can be improved even further if such 

techniques can be incorporated in our framework.  

The proposed technique is fraught with the same 

limitations as SRC. It would be good for problems on multi-

class classification such as identification in biometrics. 

However it would not succeed very well for problems such 

as verification and detection. 
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